A261254 Coefficients in an asymptotic expansion of A261239 in falling factorials.
1, -4, 2, -4, -21, -136, -996, -8152, -73811, -733244, -7938186, -93126716, -1178054657, -15998857056, -232339375664, -3594982133808, -59070662442383, -1027605845674036, -18873206761567638, -365015243426704372, -7416392564276075453, -157957992952546414328
Offset: 0
Keywords
Examples
A261239(n)/(-3*n!) ~ 1 - 4/n + 2/(n*(n-1)) - 4/(n*(n-1)*(n-2)) - 21/(n*(n-1)*(n-2)*(n-3)) - 136/(n*(n-1)*(n-2)*(n-3)*(n-4)) - 996/(n*(n-1)*(n-2)*(n-3)*(n-4)*(n-5)) - ... [coefficients are A261254] A261239(n)/(-3*n!) ~ 1 - 4/n + 2/n^2 - 2/n^3 - 31/n^4 - 288/n^5 - 2939/n^6 - ... [coefficients are A261253]
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..446
Programs
-
Mathematica
CoefficientList[Assuming[Element[x, Reals], Series[E^(4/x) * x^4 / ExpIntegralEi[1/x]^4, {x, 0, 25}]], x]
Formula
a(n) ~ -4 * n! * (1 - 5/n + 5/n^2 - 30/n^4 - 286/n^5 - 2960/n^6 - 34890/n^7 - 459705/n^8 - 6678641/n^9 - 105999991/n^10).
For n>0, a(n) = Sum_{k=1..n} A261253(k) * Stirling1(n-1, k-1).