A261281 Least positive integer k with prime(k)^2-2 and prime(prime(k))^2-2 both prime such that prime(k*n)^2-2 and prime(prime(k*n))^2-2 are all prime.
1, 1, 319, 134, 34, 62, 2, 536, 5215, 15, 3965, 2168, 34, 1, 1, 737, 2, 7075, 3699, 419, 132, 372, 14, 2, 34, 2, 52, 1, 668, 36561, 2, 48, 1239, 1, 401, 1613, 1646, 2472, 43, 31361, 134, 1103, 1, 5374, 6201, 466, 1, 1, 2118, 2, 1646, 1, 1343, 856, 28, 1868, 10324, 360, 2845, 6571, 65, 1, 419, 43, 1, 2, 2, 1, 889, 202
Offset: 1
Keywords
Examples
a(2) = 1 since prime(1)^2-2 = 2^2-2 = 2, prime(prime(1))^2-2 = prime(2)^2-2 = 3^2-2 = 7, prime(1*2)^2-2 = 3^2-2 = 7, and prime(prime(1*2))^2-2 = prime(3)^2-2 = 5^2-2 = 23 are all prime. a(3) = 319 since prime(319)^2-2 = 2113^2-2 = 4464767, prime(prime(319))^2-2 = prime(2113)^2-2 = 18443^2-2 = 340144247, prime(319*3)^2-2 = 7547^2-2 = 56957207, and prime(prime(3*319))^2-2 = prime(7547)^2-2 = 76757^2-2 = 5891637047 are all prime.
References
- Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..2000
- Zhi-Wei Sun, Checking the conjecture for r = a/b with a,b = 1..300
- Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014.
Programs
-
Mathematica
f[n_]:=Prime[n] q[n_]:=PrimeQ[f[n]^2-2]&&PrimeQ[f[f[n]]^2-2] Do[k=0;Label[bb];k=k+1;If[q[k]&&q[k*n],Goto[aa],Goto[bb]];Label[aa];Print[n," ", k];Continue,{n,1,70}]
-
PARI
a(n) = my(k=1); while (!isprime(prime(k)^2-2) || !isprime(prime(prime(k))^2-2) || !isprime(prime(k*n)^2-2) || !isprime(prime(prime(k*n))^2-2), k++); k; \\ Michel Marcus, Aug 14 2015
Comments