cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261283 a(n) = bitwise XOR of all the bit numbers for the bits that are set in n, using number 1 for the LSB.

Original entry on oeis.org

0, 1, 2, 3, 3, 2, 1, 0, 4, 5, 6, 7, 7, 6, 5, 4, 5, 4, 7, 6, 6, 7, 4, 5, 1, 0, 3, 2, 2, 3, 0, 1, 6, 7, 4, 5, 5, 4, 7, 6, 2, 3, 0, 1, 1, 0, 3, 2, 3, 2, 1, 0, 0, 1, 2, 3, 7, 6, 5, 4, 4, 5, 6, 7, 7, 6, 5, 4, 4, 5, 6, 7, 3, 2, 1, 0, 0, 1, 2, 3, 2, 3, 0, 1, 1, 0
Offset: 0

Views

Author

M. F. Hasler, Aug 14 2015, following the original version A253315 by Philippe Beaudoin, Dec 30 2014

Keywords

Comments

If the least significant bit is numbered 0, then a(2n) = a(2n+1) if one uses the "natural" definition reading "...set in n": see A253315 for that version. To avoid the duplication, we chose here to start numbering the bits with 1 for the LSB; equivalently, we can start numbering the bits with 0 but use the definition "...bits set in 2n". In any case, a(n) = A253315(2n) = A253315(2n+1).
Since the XOR operation is associative, one can define XOR of an arbitrary number of terms in a recursive way, there is no ambiguity about the order in which the operations are performed.

Examples

			a(7) = a(4+2+1) = a(2^2+2^1+2^0) = (2+1) XOR (1+1) XOR (0+1) = 3 XOR 3 = 0.
a(12) = a(8+4) = a(2^3+2^2) = (3+1) XOR (2+1) = 4+3 = 7.
		

Crossrefs

Cf. A075926 (indices of 0's), A253315, A327041 (OR equivalent).

Programs

  • Mathematica
    A261283[n_] := If[n == 0, 0, BitXor @@ PositionIndex[Reverse[IntegerDigits[n, 2]]][1]]; Array[A261283, 100, 0] (* Paolo Xausa, May 29 2024 *)
  • PARI
    A261283(n,b=bittest(n,0))={for(i=1,#binary(n),bittest(n,i)&&b=bitxor(b,i+1));b}