cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A262930 Expansion of (psi(-q) / f(q^3))^2 in powers of q where psi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, -2, 1, -4, 6, -2, 12, -16, 5, -28, 36, -12, 60, -76, 24, -120, 150, -46, 228, -280, 86, -416, 504, -152, 732, -878, 262, -1252, 1488, -442, 2088, -2464, 725, -3408, 3996, -1168, 5460, -6364, 1852, -8600, 9972, -2886, 13344, -15400, 4436, -20424, 23472
Offset: 0

Views

Author

Michael Somos, Oct 04 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*x + x^2 - 4*x^3 + 6*x^4 - 2*x^5 + 12*x^6 - 16*x^7 + 5*x^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (1/2) q^(-1/4) (EllipticTheta[ 2, Pi/4, q^(1/2)] / QPochhammer[ -q^3])^2, {q, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( ( eta(x + A) * eta(x^3 + A) * eta(x^4 + A) * eta(x^12 + A) / ( eta(x^2 + A) * eta(x^6 + A)^3 ))^2, n))};

Formula

Expansion of ( eta(q) * eta(q^3) * eta(q^4) * eta(q^12) / ( eta(q^2) * eta(q^6)^3 ))^2 in powers of q.
Euler transform of period 12 sequence [ -2, 0, -4, -2, -2, 4, -2, -2, -4, 0, -2, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 3 g(t) where q = exp(2 Pi i t) and g() is the g.f. of A261369.
a(3*n) = A261320(n). a(3*n + 1) = -2 * A261325(n). a(3*n + 2) = A261369(n).
Convolution square of A139136.
a(2*n) = A263538(n). a(2*n + 1) = -2 * A263528(n).

A132002 Expansion of phi(q^3) / phi(q) in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -2, 4, -6, 10, -16, 24, -36, 52, -74, 104, -144, 198, -268, 360, -480, 634, -832, 1084, -1404, 1808, -2316, 2952, -3744, 4728, -5946, 7448, -9294, 11556, -14320, 17688, -21780, 26740, -32736, 39968, -48672, 59122, -71644, 86616, -104484, 125768, -151072
Offset: 0

Views

Author

Michael Somos, Aug 06 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*x + 4*x^2 - 6*x^3 + 10*x^4 - 16*x^5 + 24*x^6 - 36*x^7 + 52*x^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q^3] / EllipticTheta[ 3, 0, q], {q, 0, n}]; (* Michael Somos, Apr 04 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ q, -q^3] QPochhammer[ -q^2, -q^3] / (QPochhammer[ -q, -q^3] QPochhammer[ q^2, -q^3]), {q, 0, n}]; (* Michael Somos, Nov 02 2015 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=1, sqrtint(n\3), 2*x^(3*k^2), 1 + x * O(x^n)) / sum(k=1, sqrtint(n), 2*x^k^2, 1 + x * O(x^n)), n))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^4 + A)^2 * eta(x^6 + A)^5 / (eta(x^2 + A)^5 * eta(x^3 + A)^2 * eta(x^12 + A)^2), n))};

Formula

Expansion of eta(q)^2 * eta(q^4)^2 * eta(q^6)^5 / ( eta(q^2)^5 * eta(q^3)^2 * eta(q^12)^2) in powers of q.
Euler transform of period 12 sequence [ -2, 3, 0, 1, -2, 0, -2, 1, 0, 3, -2, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (v+u) * (v-u) + (1 - u*v) * (1 - 3*u*v).
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = u^3 - v + 3*u*v^2 * (1 - u*v).
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 3^(-1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A139007. - Michael Somos, Apr 04 2015
G.f.: (Sum_{k in Z} x^(3*k^2)) / (Sum_{k in Z} x^k^2).
G.f.: Product_{k>0} (1 + (-x)^k + x^(2*k)) / (1 - (-x)^k + x^(2*k)). - Michael Somos, Apr 04 2015
a(n) = (-1)^n * A098151(n).
Convolution inverse of A139137. Convolution square is A261320. - Michael Somos, Aug 14 2015
Expansion of f(-q, q^2) / f(q, -q^2) in powers of q where f(, ) is Ramanujan's general theta function. - Michael Somos, Nov 02 2015
a(n) = A139136(3*n) = A139137(3*n). - Michael Somos, Nov 02 2015
a(n) ~ (-1)^n * exp(Pi*sqrt(2*n/3)) / (2^(5/4) * 3^(3/4) * n^(3/4)). - Vaclav Kotesovec, Nov 16 2017

A260215 Expansion of chi(-q) * chi(q^9) / (chi(q) * chi(-q^9)) in powers of q where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, -2, 2, -4, 6, -8, 12, -16, 22, -28, 36, -48, 60, -76, 96, -120, 150, -184, 228, -280, 340, -416, 504, -608, 732, -878, 1052, -1252, 1488, -1768, 2088, -2464, 2902, -3408, 3996, -4672, 5460, -6364, 7400, -8600, 9972, -11544, 13344, -15400, 17752, -20424
Offset: 0

Views

Author

Michael Somos, Aug 13 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*x + 2*x^2 - 4*x^3 + 6*x^4 - 8*x^5 + 12*x^6 - 16*x^7 + 22*x^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ q, q^2] QPochhammer[ q, -q] QPochhammer[ -q^9, q^18] QPochhammer[ -q^9, q^9], {q, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^4 + A) * eta(x^18 + A)^3 / (eta(x^2 + A)^3 * eta(x^9 + A)^2 * eta(x^36 + A)), n))};

Formula

Expansion of psi(-q) * psi(q^9) / (psi(q) * psi(-q^9)) in powers of q where psi() is a Ramanujan theta function.
Expansion of eta(q)^2 * eta(q^4) * eta(q^18)^3 / (eta(q^2)^3 * eta(q^9)^2 * eta(q^36)) in powers of q.
Euler transform of period 36 sequence [ -2, 1, -2, 0, -2, 1, -2, 0, 0, 1, -2, 0, -2, 1, -2, 0, -2, 0, -2, 0, -2, 1, -2, 0, -2, 1, 0, 0, -2, 1, -2, 0, -2, 1, -2, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = g(t) where q = exp(2 Pi i t) and g() is the g.f. of A128143.
a(n) = (-1)^n * A261156(n). Convolution inverse of A261156
a(2*n + 1) = -2 * A261203(n) = -2 * A261154(2*n + 1). 2 * a(2*n) = A261154(2*n) unless n=0.
a(3*n) = A261320(n). a(3*n + 1) = -2 * A261325(n). a(3*n + 2) = 2 * A260057(n). - Michael Somos, Nov 08 2015
a(n) ~ (-1)^n * exp(2*Pi*sqrt(n)/3) / (2*sqrt(3)*n^(3/4)). - Vaclav Kotesovec, Nov 16 2017

A261326 Expansion of f(-x^2, -x^4)^2 / (f(x^3, -x^6) * f(-x, x^2)) in powers of x where f(,) is Ramanujan's general theta function.

Original entry on oeis.org

1, 1, -2, -4, -3, 4, 12, 8, -10, -28, -18, 24, 60, 38, -48, -120, -75, 92, 228, 140, -172, -416, -252, 304, 732, 439, -524, -1252, -744, 884, 2088, 1232, -1450, -3408, -1998, 2336, 5460, 3182, -3704, -8600, -4986, 5772, 13344, 7700, -8872, -20424, -11736
Offset: 0

Views

Author

Michael Somos, Aug 14 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x - 2*x^2 - 4*x^3 - 3*x^4 + 4*x^5 + 12*x^6 + 8*x^7 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x] QPochhammer[ x^2] QPochhammer[ x^6] / QPochhammer[ -x^3]^3, {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^4 * eta(x^3 + A)^3 * eta(x^12 + A)^3 / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A)^8), n))};

Formula

Expansion of f(x) * f(-x^2) * f(-x^6) / f(x^3)^3 in powers of x where f() is a Ramanujan theta function.
Euler transform of period 12 sequence [ 1, -3, -2, -2, 1, 2, 1, -2, -2, -3, 1, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 3 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A261325.
a(3*n) = A261320(n). a(3*n + 1) = A261325(n).

A261321 Expansion of (phi(q) / phi(q^3))^2 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 4, 4, -4, -12, -8, 12, 32, 20, -28, -72, -48, 60, 152, 96, -120, -300, -184, 228, 560, 344, -416, -1008, -608, 732, 1756, 1048, -1252, -2976, -1768, 2088, 4928, 2900, -3408, -7992, -4672, 5460, 12728, 7408, -8600, -19944, -11544, 13344, 30800, 17744, -20424
Offset: 0

Views

Author

Michael Somos, Aug 14 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
The generating function is associated with a modular equation of degree 3 and is the multiplier denoted by "m". - Michael Somos, Nov 01 2017

Examples

			G.f. = 1 + 4*x + 4*x^2 - 4*x^3 - 12*x^4 - 8*x^5 + 12*x^6 + 32*x^7 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 230 Entry 5(iii), g.f. denoted by multiplier m.

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] / EllipticTheta[ 3, 0, q^3])^2, {q, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^10 * eta(x^3 + A)^4 * eta(x^12 + A)^4 / (eta(x + A)^4 * eta(x^4 + A)^4 * eta(x^6 + A)^10), n))};

Formula

Expansion of eta(q^2)^10 * eta(q^3)^4 * eta(q^12)^4 / (eta(q)^4 * eta(q^4)^4 * eta(q^6)^10) in powers of q.
G.f.: (Sum_{k in Z} x^k^2) / (Sum_{k in Z} x^(3*k^2))^2.
a(n) = -(1)^n * A217771(n). a(n) = 4 * A187153(n) = 4 * A213265(n) unless n=0.
a(2*n) = 4 * A123633(n) = 4 * A128636(n) unless n=0. a(3*n) = -4 * A228447(n) unless n=0.
Convolution inverse is A261320. Convolution square of A139137.
Showing 1-5 of 5 results.