cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A262930 Expansion of (psi(-q) / f(q^3))^2 in powers of q where psi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, -2, 1, -4, 6, -2, 12, -16, 5, -28, 36, -12, 60, -76, 24, -120, 150, -46, 228, -280, 86, -416, 504, -152, 732, -878, 262, -1252, 1488, -442, 2088, -2464, 725, -3408, 3996, -1168, 5460, -6364, 1852, -8600, 9972, -2886, 13344, -15400, 4436, -20424, 23472
Offset: 0

Views

Author

Michael Somos, Oct 04 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*x + x^2 - 4*x^3 + 6*x^4 - 2*x^5 + 12*x^6 - 16*x^7 + 5*x^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (1/2) q^(-1/4) (EllipticTheta[ 2, Pi/4, q^(1/2)] / QPochhammer[ -q^3])^2, {q, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( ( eta(x + A) * eta(x^3 + A) * eta(x^4 + A) * eta(x^12 + A) / ( eta(x^2 + A) * eta(x^6 + A)^3 ))^2, n))};

Formula

Expansion of ( eta(q) * eta(q^3) * eta(q^4) * eta(q^12) / ( eta(q^2) * eta(q^6)^3 ))^2 in powers of q.
Euler transform of period 12 sequence [ -2, 0, -4, -2, -2, 4, -2, -2, -4, 0, -2, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 3 g(t) where q = exp(2 Pi i t) and g() is the g.f. of A261369.
a(3*n) = A261320(n). a(3*n + 1) = -2 * A261325(n). a(3*n + 2) = A261369(n).
Convolution square of A139136.
a(2*n) = A263538(n). a(2*n + 1) = -2 * A263528(n).

A260215 Expansion of chi(-q) * chi(q^9) / (chi(q) * chi(-q^9)) in powers of q where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, -2, 2, -4, 6, -8, 12, -16, 22, -28, 36, -48, 60, -76, 96, -120, 150, -184, 228, -280, 340, -416, 504, -608, 732, -878, 1052, -1252, 1488, -1768, 2088, -2464, 2902, -3408, 3996, -4672, 5460, -6364, 7400, -8600, 9972, -11544, 13344, -15400, 17752, -20424
Offset: 0

Views

Author

Michael Somos, Aug 13 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*x + 2*x^2 - 4*x^3 + 6*x^4 - 8*x^5 + 12*x^6 - 16*x^7 + 22*x^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ q, q^2] QPochhammer[ q, -q] QPochhammer[ -q^9, q^18] QPochhammer[ -q^9, q^9], {q, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^4 + A) * eta(x^18 + A)^3 / (eta(x^2 + A)^3 * eta(x^9 + A)^2 * eta(x^36 + A)), n))};

Formula

Expansion of psi(-q) * psi(q^9) / (psi(q) * psi(-q^9)) in powers of q where psi() is a Ramanujan theta function.
Expansion of eta(q)^2 * eta(q^4) * eta(q^18)^3 / (eta(q^2)^3 * eta(q^9)^2 * eta(q^36)) in powers of q.
Euler transform of period 36 sequence [ -2, 1, -2, 0, -2, 1, -2, 0, 0, 1, -2, 0, -2, 1, -2, 0, -2, 0, -2, 0, -2, 1, -2, 0, -2, 1, 0, 0, -2, 1, -2, 0, -2, 1, -2, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = g(t) where q = exp(2 Pi i t) and g() is the g.f. of A128143.
a(n) = (-1)^n * A261156(n). Convolution inverse of A261156
a(2*n + 1) = -2 * A261203(n) = -2 * A261154(2*n + 1). 2 * a(2*n) = A261154(2*n) unless n=0.
a(3*n) = A261320(n). a(3*n + 1) = -2 * A261325(n). a(3*n + 2) = 2 * A260057(n). - Michael Somos, Nov 08 2015
a(n) ~ (-1)^n * exp(2*Pi*sqrt(n)/3) / (2*sqrt(3)*n^(3/4)). - Vaclav Kotesovec, Nov 16 2017

A261326 Expansion of f(-x^2, -x^4)^2 / (f(x^3, -x^6) * f(-x, x^2)) in powers of x where f(,) is Ramanujan's general theta function.

Original entry on oeis.org

1, 1, -2, -4, -3, 4, 12, 8, -10, -28, -18, 24, 60, 38, -48, -120, -75, 92, 228, 140, -172, -416, -252, 304, 732, 439, -524, -1252, -744, 884, 2088, 1232, -1450, -3408, -1998, 2336, 5460, 3182, -3704, -8600, -4986, 5772, 13344, 7700, -8872, -20424, -11736
Offset: 0

Views

Author

Michael Somos, Aug 14 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x - 2*x^2 - 4*x^3 - 3*x^4 + 4*x^5 + 12*x^6 + 8*x^7 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x] QPochhammer[ x^2] QPochhammer[ x^6] / QPochhammer[ -x^3]^3, {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^4 * eta(x^3 + A)^3 * eta(x^12 + A)^3 / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A)^8), n))};

Formula

Expansion of f(x) * f(-x^2) * f(-x^6) / f(x^3)^3 in powers of x where f() is a Ramanujan theta function.
Euler transform of period 12 sequence [ 1, -3, -2, -2, 1, 2, 1, -2, -2, -3, 1, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 3 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A261325.
a(3*n) = A261320(n). a(3*n + 1) = A261325(n).

A261446 Expansion of f(-x^3, -x^3) * f(-x, -x^5) / f(-x, -x)^2 in powers of x where f(,) is Ramanujan's general theta function.

Original entry on oeis.org

1, 3, 8, 18, 38, 75, 140, 252, 439, 744, 1232, 1998, 3182, 4986, 7700, 11736, 17673, 26322, 38808, 56682, 82070, 117867, 167996, 237744, 334202, 466836, 648224, 895014, 1229148, 1679436, 2283568, 3090672, 4164578, 5587941, 7467464, 9940482, 13183238, 17421288
Offset: 0

Views

Author

Michael Somos, Aug 19 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 3*x + 8*x^2 + 18*x^3 + 38*x^4 + 75*x^5 + 140*x^6 + 252*x^7 + ...
G.f. = q + 3*q^4 + 8*q^7 + 18*q^10 + 38*q^13 + 75*q^16 + 140*q^19 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^2] QPochhammer[ x^3] QPochhammer[ x^6] / QPochhammer[ x]^3, {x, 0, n}];
    nmax=60; CoefficientList[Series[Product[(1-x^(2*k)) * (1-x^(3*k)) * (1-x^(6*k)) / (1-x^k)^3,{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Oct 14 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A) * eta(x^6 + A) / eta(x + A)^3, n))};

Formula

Expansion of f(-x^2) * f(-x^3) * f(-x^6) / f(-x)^3 in powers of x where f() is a Ramanujan theta function.
Expansion of q^(-1/3) * eta(q^2) * eta(q^3) * eta(q^6) / eta(q)^3 in powers of q.
Euler transform of period 6 sequence [ 3, 2, 2, 2, 3, 0, ...].
a(n) = (-1)^n * A261325(n). 2 * a(2*n) = A261240(3*n + 1). a(2*n + 1) = 3 * A233698(n).
2 * a(n) = A058647(3*n + 1) = A139213(3*n + 1) = A186964(3*n + 1) = A187020(3*n + 1).
a(n) = A123649(3*n + 1) = A139214(3*n + 1) = A233693(3*n + 1).
Convolution inverse is A132301.
a(n) ~ exp(2*Pi*sqrt(n/3)) / (4 * 3^(5/4) * n^(3/4)). - Vaclav Kotesovec, Oct 14 2015

A263526 Expansion of f(x, x)^2 / (f(x^3, x^3) * f(x, x^5)) in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, 3, 1, -3, -1, 0, 1, 6, 0, -6, -3, -3, 4, 12, 1, -12, -6, -3, 5, 24, 1, -24, -10, -6, 11, 42, 4, -42, -19, -12, 17, 72, 4, -69, -31, -18, 31, 120, 9, -114, -50, -30, 46, 189, 11, -180, -79, -48, 77, 294, 21, -276, -122, -72, 112, 450, 28, -420, -183, -108
Offset: 0

Views

Author

Michael Somos, Oct 19 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 3*x + x^2 - 3*x^3 - x^4 + x^6 + 6*x^7 - 6*x^9 - 3*x^10 + ...
G.f. = 1/q + 3*q^2 + q^5 - 3*q^8 - q^11 + q^17 + 6*q^20 - 6*q^26 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x]^3 / (QPochhammer[ x^2] QPochhammer[ -x^3] QPochhammer[ x^6]), {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^8 * eta(x^3 + A) * eta(x^12 + A) / (eta(x + A)^3 * eta(x^4 + A)^3 * eta(x^6 + A)^4), n))};

Formula

Expansion of f(x)^3 / (f(-x^2) * f(x^3) * f(-x^6)) in powers of x where f() is a Ramanujan theta function.
Expansion of q^(1/3) * eta(q^2)^8 * eta(q^3) * eta(q^12) / (eta(q)^3 * eta(q^4)^3 * eta(q^6)^4) in powers of q.
Euler transform of period 12 sequence [ 3, -5, 2, -2, 3, -2, 3, -2, 2, -5, 3, 0, ...].
a(n) = (-1)^n * A132301(n). Convolution inverse of A261325.
a(2*n) = A132179(n). a(2*n + 1) = 3 * A092848(n). a(4*n) = A230256(n). a(4*n + 1) = 3 * A233034(n). a(4*n + 2) = A233037(n). a(4*n + 3) = -3 * A216046(n).
Showing 1-5 of 5 results.