cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A261382 Least positive integer k such that (k-1)^2+(k*n)^2, k^2+(k*n-1)^2, (k+1)^2+(k*n)^2 and k^2+(k*n+1)^2 are all prime.

Original entry on oeis.org

2, 2510, 15, 30, 5, 510, 730, 440, 195, 6230, 2040, 2760, 20, 1010, 12570, 31340, 1625, 1650, 725, 2480, 2160, 520, 1055, 60, 5, 20, 1260, 25800, 6185, 6240, 10, 1180, 12600, 7500, 5330, 390, 325, 2880, 11655, 32670, 5850, 43110, 3230, 1470, 7680, 4950, 255, 202650, 10530, 450, 2445, 11670, 8745, 103350, 80, 6890, 135, 18930, 80, 245040
Offset: 1

Views

Author

Zhi-Wei Sun, Aug 17 2015

Keywords

Comments

Conjecture: a(n) exists for any n > 0. In general, any positive rational number r can be written as m/n, where m and n are positive integers with (m-1)^2+n^2, m^2+(n-1)^2, (m+1)^2+n^2 and m^2+(n+1)^2 all prime.
It is easy to prove that if m and n are positive integers with (m-1)^2+n^2, m^2+(n-1)^2, (m+1)^2+n^2 and m^2+(n+1)^2 all prime, then either m = n = 2 or m == n == 0 (mod 5).

Examples

			a(2) = 2510 since (2510-1)^2+(2510*2)^2 = 31495481, 2510^2+(2510*2-1)^2 = 31490461, (2510+1)^2+(2510*2)^2 = 31505521 and 2510^2+(2510*2+1)^2 = 31510541 are all prime.
		

References

  • Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.

Crossrefs

Programs

  • Mathematica
    PQ[p_]:=PrimeQ[p]
    q[m_,n_]:=PQ[(m-1)^2+n^2]&&PQ[m^2+(n-1)^2]&&PQ[(m+1)^2+n^2]&&PQ[m^2+(n+1)^2]
    Do[k=0;Label[bb];k=k+1;If[q[k,k*n],Goto[aa],Goto[bb]];Label[aa];Print[n," ", k];Continue,{n,1,60}]
  • PARI
    is_ok(k,n)=isprime((k-1)^2+(k*n)^2)&&isprime(k^2+(k*n-1)^2)&&isprime((k+1)^2+(k*n)^2)&&isprime(k^2+(k*n+1)^2)
    first(m)=my(v=vector(m),k=1);for(i=1,m,while(!is_ok(k,i),k++);v[i]=k;k++;);v; \\ Anders Hellström, Aug 17 2015
Showing 1-1 of 1 results.