A261344 Numbers n such that n!3 - 3^8 is prime, where n!3 = n!!! is a triple factorial number (A007661).
16, 17, 20, 25, 26, 35, 37, 47, 88, 94, 125, 127, 134, 326, 328, 368, 398, 425, 698, 700, 734, 1303, 1427, 2011, 2542, 2699, 3938, 4214, 5137, 6314, 8669, 9041, 12494, 13520, 14609, 23732, 41399, 43867, 49471
Offset: 1
Examples
16!3 - 3^8 = 16*13*10*7*4*1 - 6561 = 51679 is prime, so 16 is in the sequence.
Links
- Henri & Renaud Lifchitz, PRP Records. Search for n!3-6561.
- Joe McLean, Interesting Sources of Probable Primes
- OpenPFGW Project, Primality Tester
Programs
-
Mathematica
MultiFactorial[n_, k_] := If[n < 1, 1, If[n < k + 1, n, n*MultiFactorial[n - k, k]]]; Select[Range[0, 50000], PrimeQ[MultiFactorial[#, 3] - 3^8] &] Select[Range[14,800],PrimeQ[Times@@Range[#,1,-3]-6561]&] (* The program generates the first 21 terms of the sequence. To generate more, increase the Range constant. *) (* Harvey P. Dale, Apr 27 2022 *)
-
PARI
for(n=1, 1e3, if(ispseudoprime(prod(i=0, floor((n-1)/3), n-3*i) - 3^8), print1(n, ", "))) \\ Altug Alkan, Nov 18 2015
Comments