cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261361 Primes p such that 2*prime(p) + 1 = prime(q) for some prime q.

Original entry on oeis.org

3, 13, 173, 463, 523, 823, 971, 991, 1291, 1543, 2113, 4003, 4019, 4649, 5923, 6037, 6101, 7649, 10103, 12539, 12841, 17203, 17569, 18013, 21193, 22093, 23321, 25111, 27197, 31231, 32009, 32117, 33349, 34687, 35423, 35449, 37747, 39619, 41729, 41759, 42017, 43237, 43331, 44741, 45841, 50021, 51437, 52489, 55921, 56891
Offset: 1

Views

Author

Zhi-Wei Sun, Aug 16 2015

Keywords

Comments

Conjecture: The sequence contains infinitely many terms. In general, if a,b,c are positive integers with gcd(a,b) = gcd(a,c) = gcd(b,c) = 1, and a+b+c is even and a is not equal to b, then there are infinitely many prime pairs {p,q} such that a*prime(p) - b*prime(q) = c.
See also A261362 for a stronger conjecture.
Recall that a prime p is called a Sophie Germain prime if 2*p+1 is also prime. A well-known conjecture states that there are infinitely many Sophie Germain primes.

Examples

			a(1) = 3 since 3 is a prime, and 2*prime(3)+1 = 2*5+1 = 11 = prime(5) with 5 prime.
a(3) = 173 since 173 is a prime, and 2*prime(173)+1 = 2*1031+1 = 2063 = prime(311) with 311 prime.
		

References

  • Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.

Crossrefs

Programs

  • Mathematica
    f[n_]:=2*Prime[Prime[n]]+1
    PQ[p_]:=PrimeQ[p]&&PrimeQ[PrimePi[p]]
    n=0;Do[If[PQ[f[k]],n=n+1;Print[n," ",Prime[k]]],{k,1,5800}]