A261352 Primes p such that prime(p)+2 = prime(q)*prime(r) for distinct primes q and r.
11, 23, 167, 197, 223, 317, 359, 461, 593, 619, 859, 1283, 1289, 1327, 1487, 1759, 1879, 2557, 2579, 2749, 2879, 3617, 4159, 4783, 5081, 5333, 5531, 5689, 5783, 5867, 6427, 6521, 7589, 7681, 7727, 7753, 9041, 9157, 9283, 9479, 10111, 10289, 10853, 11261, 11779, 11867, 12541, 13309, 13399, 13687
Offset: 1
Keywords
Examples
a(1) = 11 since 11 is a prime, and prime(11)+2 = 3*11 = prime(2)*prime(5) with 2 and 5 both prime. a(2) = 23 since 23 is a prime, and prime(23)+2 = 5*17 = prime(3)*prime(7) with 3 and 7 both prime.
References
- Jing-run Chen, On the representation of a large even integer as the sum of a prime and a product of at most two primes, Sci. Sinica 16(1973), 157-176.
- Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014.
Programs
-
Mathematica
Dv[n_]:=Divisors[n] PQ[n_]:=PrimeQ[n]&&PrimeQ[PrimePi[n]] q[n_]:=Length[Dv[n]]==4&&PQ[Part[Dv[n],2]]&&PQ[Part[Dv[n],3]] f[k_]:=Prime[Prime[k]]+2 n=0;Do[If[q[f[k]],n=n+1;Print[n," ",Prime[k]]],{k,1,1620}]
Comments