A261388 a(n) is the length of the longest stretch of consecutive primitive roots of the multiplicative group modulo prime(n).
1, 1, 2, 1, 3, 2, 3, 3, 3, 2, 3, 4, 3, 3, 4, 5, 5, 2, 3, 3, 3, 3, 7, 6, 5, 4, 5, 6, 4, 3, 4, 4, 5, 4, 6, 4, 4, 4, 6, 5, 6, 3, 5, 4, 5, 3, 4, 5, 7, 4, 7, 6, 4, 5, 6, 7, 9, 4, 4, 4, 9, 5, 4, 5, 4, 6, 4, 3, 8, 6, 7, 8, 5, 5, 4, 8, 5, 3, 5, 7, 8, 6, 6, 4, 4, 6, 9, 5, 4, 4, 11, 11, 5, 5, 5, 8, 7, 5, 6
Offset: 1
Keywords
Links
- Joerg Arndt, Table of n, a(n) for n = 1..9592 (terms for all primes < 10^5)
Crossrefs
Cf. A261438 (primes corresponding to records).
Programs
-
Mathematica
a[n_] := 1 + Max[ Join[{0}, Length/@ Select[ Split@ Differences @ PrimitiveRootList @ Prime @ n, #[[1]] == 1 &]]]; Array[a, 99] (* Giovanni Resta, Aug 17 2015 *)
-
PARI
consec_pr(p)= \\ max number of consecutive primroots { my( v = vector(p-1) ); my (g = znprimroot(p) ); for (j=1, p-1, if (gcd(p-1,j)==1, v[lift(g^j)]=1 ) ); my ( m=0, t=0 ); for (j=1, p-1, if ( v[j]==0, t=0 , t+=1; if ( t>m, m=t ); ); ); return(m); } forprime(p=2,10^3, c=consec_pr(p); print1( c,", " ); );