cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A261426 Expansion of f(-x^3)^3 * phi(x^6) / f(-x) in powers of x where phi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, 2, 0, 2, 1, 4, 2, 5, 2, 6, 2, 6, 0, 4, 4, 7, 2, 4, 0, 6, 1, 8, 4, 4, 4, 10, 2, 8, 2, 12, 4, 8, 5, 6, 0, 14, 2, 8, 2, 11, 6, 6, 4, 8, 2, 8, 4, 8, 6, 14, 0, 6, 0, 12, 6, 15, 4, 14, 2, 14, 4, 8, 8, 12, 7, 14, 0, 12, 2, 16, 10, 8, 4, 10, 6, 14, 0, 16, 4, 16
Offset: 0

Views

Author

Michael Somos, Aug 18 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 + x + 2*x^2 + 2*x^4 + x^5 + 4*x^6 + 2*x^7 + 5*x^8 + 2*x^9 + ...
G.f. = q + q^4 + 2*q^7 + 2*q^13 + q^16 + 4*q^19 + 2*q^22 + 5*q^25 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^3]^3 EllipticTheta[ 3, 0, x^6] / QPochhammer[ x], {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A)^3 * eta(x^12 + A)^5 / (eta(x + A) * eta(x^6 + A)^2 * eta(x^24 + A)^2), n))};

Formula

Expansion of (1/3) * q^(-1/3) * c(q) * phi(q^6) in powers of q where phi() is a Ramanujan theta function and c() is a cubic AGM function. - Michael Somos, Sep 01 2015
Expansion of q^(-1/3) * eta(q^3)^3 * eta(q^12)^5 / (eta(q) * eta(q^6)^2 * eta(q^24)^2) in powers of q.
Euler transform of period 24 sequence [ 1, 1, -2, 1, 1, 0, 1, 1, -2, 1, 1, -5, 1, 1, -2, 1, 1, 0, 1, 1, -2, 1, 1, -3, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (72 t)) = (128/3)^(1/2) (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A261426.
24 * a(n) = A261394(6*n + 2).
a(n) = A261444(2*n). Michael Somos, Sep 01 2015
Showing 1-1 of 1 results.