A261395 Primes p such that (prime(p)-1)^2 = (prime(q)-1)*(prime(r)-1) for some pair of distinct primes q and r.
13, 47, 137, 191, 193, 223, 227, 313, 701, 857, 907, 947, 991, 1009, 1069, 1291, 1531, 1889, 2281, 2411, 2447, 2647, 3181, 3389, 3539, 3593, 4093, 4099, 4409, 4481, 4603, 4721, 5557, 5647, 6581, 6793, 6869, 6961, 7211, 7349, 7523, 7723, 7753, 8461, 8537, 8543, 8807, 9137, 9241, 9281
Offset: 1
Keywords
Examples
a(1) = 13 since (prime(13)-1)^2 = (41-1)^2 = 1600 = (5-1)*(401-1) = (prime(3)-1)*(prime(79)-1) with 13, 3, 79 all prime. a(2) = 47 since (prime(47)-1)^2 = 210^2 = 44100 = 30*1470 = (prime(11)-1)*(prime(233)-1) with 47, 11, 233 all prime.
References
- Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..600
- Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014.
Programs
-
Mathematica
Dv[n_]:=Divisors[n] L[n_]:=Length[Dv[n]] f[n_]:=Prime[Prime[n]]-1 PQ[p_]:=PrimeQ[p]&&PrimeQ[PrimePi[p]] n=0;Do[Do[If[PQ[Part[Dv[f[k]^2],i]+1]&&PQ[Part[Dv[f[k]^2],L[f[k]^2]-i+1]+1],n=n+1;Print[n," ",Prime[k]];Goto[aa]];Continue,{i,1,(L[f[k]^2]-1)/2}]; Label[aa];Continue,{k,1,1150}]
Comments