A261400 Number of n X n knot mosaics.
1, 2, 22, 2594, 4183954, 101393411126, 38572794946976686, 234855052870954505606714, 23054099362200397056093750003442, 36564627559441095000442883434988307728126, 937273142571326346553334567317274833729462713413038
Offset: 1
Keywords
Links
- Luc Ta, Table of n, a(n) for n = 1..14
- K. Hong, H. Lee, H. J. Lee and S. Oh, Small knot mosaics and partition matrices, J. Phys. A: Math. Theor. 47 (2014) 435201; arXiv:1312.4009 [math.GT].
- K. Hong, H. J. Lee, H. Lee and S. Oh, Upper bound on the total number of knot n-mosaics, J. Knot Theory Ramifications, Volume 23, Issue 13, November 2014; arXiv:1303.7044 [math.GT].
- Hwa Jeong Lee, Kyungpyo Hong, Ho Lee, and Seungsang Oh, Mosaic number of knots, arXiv: 1301.6041 [math.GT], 2014.
- Samuel J. Lomonaco and Louis H. Kauffman, Quantum Knots and Mosaics, Proc. Sympos. Applied Math., Amer. Math. Soc., Vol. 68 (2010), pp. 177-208.
- Samuel J. Lomonaco and Louis H. Kauffman, Illustration for a(3) = 22, from "Quantum Knots and Mosaics", 2010, with permission.
- Seungsang Oh, Kyungpyo Hong, Ho Lee, and Hwa Jeong Lee, Quantum knots and the number of knot mosaics, arXiv: 1412.4460 [math.GT], 2014.
- Index entries for sequences related to knots
Crossrefs
Programs
-
Mathematica
x[0] = o[0] = {{1}}; x[n_] := ArrayFlatten[{{x[n - 1], o[n - 1]}, {o[n - 1], x[n - 1]}}]; o[n_] := ArrayFlatten[{{o[n - 1], x[n - 1]}, {x[n - 1], 4*o[n - 1]}}]; mosaicsSquare[n_] := If[n > 1, 2*Total[MatrixPower[x[n - 2] + o[n - 2], n - 2], 2], 1]; Flatten[ParallelTable[mosaicsSquare[n], {n, 1, 11}]] (* This program is based on Theorem 1 of Oh, Hong, Lee, and Lee (see Links). - Luc Ta, Aug 13 2024 *)
Extensions
a(7)-a(11) from Hiroaki Yamanouchi, Aug 19 2015
Typo in a(11) corrected by Luc Ta, Aug 13 2024
Comments