A374947
a(n) is the number of suitably connected Legendrian n-Mosaics.
Original entry on oeis.org
1, 2, 20, 1504, 948032, 5204262912, 254112496082944, 111879597850371293184, 448381477417976615986528256, 16469260582635747355818375736459264, 5571666891811926168753521842383673521864704, 17424018517043252553551626372130243982114254609186816
Offset: 1
For n = 2 there are exactly a(2) = 2 suitably connected Legendrian 2-mosaics, namely the empty mosaic and the Legendrian unknot with maximal Thurston-Bennequin invariant.
- Margaret Kipe, Rust
- Margaret Kipe, Samantha Pezzimenti, Leif Schaumann, Luc Ta, and Wing Hong Tony Wong, Bounds on the mosaic number of Legendrian knots, arXiv: 2410.08064 [math.GT], 2024.
- Seungsang Oh, Kyungpyo Hong, Ho Lee, and Hwa Jeong Lee, Quantum knots and the number of knot mosaics, arXiv: 1412.4460 [math.GT], 2014.
- S. Pezzimenti and A. Pandey, Geography of Legendrian knot mosaics, Journal of Knot Theory and its Ramifications, 31 (2022), article no. 2250002, 1-22.
- Index entries for sequences related to knots
Cf.
A261400,
A375354,
A374939,
A374942,
A374943,
A374944,
A374945,
A374946,
A375353,
A375355,
A375356,
A375357.
-
x[0] = o[0] = {{1}};
x[n_] := ArrayFlatten[{{x[n - 1], o[n - 1]}, {o[n - 1], x[n - 1]}}];
o[n_] := ArrayFlatten[{{o[n - 1], x[n - 1]}, {x[n - 1], 3*o[n - 1]}}];
legendrianSquare[n_] := If[n > 1, 2*Total[MatrixPower[x[n - 2] + o[n - 2], n - 2], 2], 1];
Flatten[ParallelTable[legendrianSquare[n], {n, 1, 11}]] (* This program is adapted from Theorem 1 of Oh, Hong, Lee, and Lee (see Links, cf. A375354). - Luc Ta, Aug 20 2024 *)
-
// See Margaret Kipe link
a(7)-a(11) from
Luc Ta, Aug 20 2024
A375353
T(m,n) = Number of m X n knot/link mosaics read by rows, with 1<=n<=m.
Original entry on oeis.org
1, 1, 2, 1, 4, 22, 1, 8, 130, 2594, 1, 16, 778, 54226, 4183954, 1, 32, 4666, 1144526, 331745962, 101393411126, 1, 64, 27994, 24204022, 26492828950, 31507552821550, 38572794946976686, 1, 128, 167962, 512057546, 2119630825150, 9841277889785426, 47696523856560453790, 234855052870954505606714
Offset: 1
Triangle begins:
1;
1, 2;
1, 4, 22;
1, 8, 130, 2594;
1, 16, 778, 54226, 4183954;
1, 32, 4666, 1144526, 331745962, 101393411126;
...
T(2,2) = 2 since the only suitably connected 2 X 2 link mosaics are the empty mosaic and the mosaic depicting an unknot attaining its minimal crossing number.
For all n >= 1, we have T(n,1) = 1 since the only suitably connected mosaic with one column is empty.
- Luc Ta, First 11 rows of the triangle, flattened
- K. Hong, H. Lee, H. J. Lee and S. Oh, Small knot mosaics and partition matrices, J. Phys. A: Math. Theor. 47 (2014) 435201; arXiv:1312.4009 [math.GT], 2013-2014.
- Samuel J. Lomonaco and Louis H. Kauffman, Quantum Knots and Mosaics, Proc. Sympos. Applied Math., Amer. Math. Soc., Vol. 68 (2010), pp. 177-208.
- Seungsang Oh, Kyungpyo Hong, Ho Lee, and Hwa Jeong Lee, Quantum knots and the number of knot mosaics, arXiv: 1412.4460 [math.GT], 2014.
- Index entries for sequences related to knots
The main diagonal T(n,n) is
A261400.
-
x[0] = o[0] = {{1}};
x[n_] := ArrayFlatten[{{x[n - 1], o[n - 1]}, {o[n - 1], x[n - 1]}}];
o[n_] := ArrayFlatten[{{o[n - 1], x[n - 1]}, {x[n - 1], 4*o[n - 1]}}];
mosaics[m_, n_] := If[m > 1 && n > 1, 2*Total[MatrixPower[x[m - 2] + o[m - 2], n - 2], 2], 1];
Flatten[ParallelTable[mosaics[m, n], {m, 1, 11}, {n, 1, m}]] (* Luc Ta, Aug 13 2024 *)
A375354
T(m,n) is the number of suitably connected m X n Legendrian mosaics read by rows, with 1<=n<=m.
Original entry on oeis.org
1, 1, 2, 1, 4, 20, 1, 8, 104, 1504, 1, 16, 544, 22208, 948032, 1, 32, 2848, 329216, 40930304, 5204262912, 1, 64, 14912, 4883968, 1772261888, 666548862976, 254112496082944, 1, 128, 78080, 72464384, 76795762688, 85575149027328, 97392800416399360, 111879597850371293184
Offset: 1
Triangle begins:
1;
1, 2;
1, 4, 20;
1, 8, 104, 1504;
1, 16, 544, 22208, 948032;
1, 32, 2848, 329216, 40930304, 5204262912;
...
T(2,2) = 2 since the only suitably connected 2 X 2 Legendrian mosaics are the empty mosaic and the mosaic depicting the Legendrian unknot with maximal Thurston-Bennequin invariant.
For all n >= 1, we have T(n,1) = 1 since the only suitably connected Legendrian mosaic with one column is empty.
- Luc Ta, First 11 rows of the triangle, flattened
- Margaret Kipe, Samantha Pezzimenti, Leif Schaumann, Luc Ta, and Wing Hong Tony Wong, Bounds on the mosaic number of Legendrian knots, arXiv: 2410.08064 [math.GT], 2024.
- Seungsang Oh, Kyungpyo Hong, Ho Lee, and Hwa Jeong Lee, Quantum knots and the number of knot mosaics, arXiv: 1412.4460 [math.GT], 2014.
- S. Pezzimenti and A. Pandey, Geography of Legendrian knot mosaics, Journal of Knot Theory and its Ramifications, 31 (2022), article no. 2250002, 1-22.
- Index entries for sequences related to knots
The main diagonal T(n,n) is
A374947.
-
x[0] = o[0] = {{1}};
x[n_] := ArrayFlatten[{{x[n - 1], o[n - 1]}, {o[n - 1], x[n - 1]}}];
o[n_] := ArrayFlatten[{{o[n - 1], x[n - 1]}, {x[n - 1], 3*o[n - 1]}}];
legendrian[m_, n_] := If[m > 1 && n > 1, 2*Total[MatrixPower[x[m - 2] + o[m - 2], n - 2], 2], 1];
Flatten[ParallelTable[legendrian[m, n], {m, 1, 11}, {n, 1, m}]] (* Luc Ta, Aug 13 2024 *)
A375355
T(m, n) is the number of m X n period knot/link mosaics read by rows, with 1 <= n <= m.
Original entry on oeis.org
7, 29, 359, 133, 5519, 316249, 641, 91283, 19946891, 4934695175, 3157, 1549799, 1298065813, 1268810595131, 1300161356831107, 15689, 26576579, 85436799491, 330595705214327, 1353434715973001999, 5644698772550126097593, 78253, 457549079, 5648174618317, 86566215054880187, 1416905739955631598043, 23696846086162116561085541, 399312236302057306354637147077
Offset: 1
Triangle begins:
7;
29, 359;
133, 5519, 316249;
641, 91283, 19946891, 4934695175;
3157, 1549799, 1298065813, 1268810595131, 1300161356831107;
...
T(1,1) = 7 since the only period 1 X 1 link mosaics are given by the tiles T_0 and T_5 through T_10 of Lomonaco and Kauffman.
- Luc Ta, First 11 rows of the triangle, flattened
- Samuel J. Lomonaco and Louis H. Kauffman, Quantum Knots and Mosaics, Proc. Sympos. Applied Math., Amer. Math. Soc., Vol. 68 (2010), pp. 177-208.
- Seungsang Oh, Kyungpyo Hong, Ho Lee, Hwa Jeong Lee, and Mi Jeong Yeon, Period and toroidal knot mosaics, arXiv: 1703.04867 [math.GT], 2017.
- Index entries for sequences related to knots
-
x[0] = o[0] = {{1}}; y[0] = p[0] = {{0}};
x[n_] := ArrayFlatten[{{x[n - 1], p[n - 1]}, {p[n - 1], x[n - 1]}}];
y[n_] := ArrayFlatten[{{y[n - 1], o[n - 1]}, {o[n - 1], y[n - 1]}}];
o[n_] := ArrayFlatten[{{o[n - 1], y[n - 1]}, {y[n - 1], 4 * o[n - 1]}}];
p[n_] := ArrayFlatten[{{p[n - 1], x[n - 1]}, {x[n - 1], 4 * p[n - 1]}}];
periodcount[m_, n_] := Tr[MatrixPower[x[m] + o[m], n]];
Flatten[ParallelTable[periodcount[m, n], {m, 1, 11}, {n, 1, m}]]
A375356
T(m, n) is the number of m X n toroidal knot/link mosaics read by rows, with 1 <= n <= m.
Original entry on oeis.org
7, 18, 110, 49, 954, 35237, 171, 11591, 1662837, 308435024, 637, 155310, 86538181, 63440607699, 52006454275147
Offset: 1
Triangle begins:
7;
18, 110;
49, 954, 35237;
171, 11591, 1662837, 308435024;
637, 155310, 86538181, 63440607699, 52006454275147;
...
The only period 1 X 1 link mosaics are given by the tiles T_0 and T_5 through T_10 of Lomonaco and Kauffman. None of these mosaics are cyclic rotations of rows and columns of the others (since there are no rows or columns to permute in the first place). Therefore, T(1,1) = 7.
An exhaustive list of all 110 distinct 2 X 2 toroidal link mosaics is given collectively by Appendix A of Carlisle and Laufer and Figure 4 of Oh, Hong, Lee, Lee, and Yeon.
- Michael Carlisle and Michael S. Laufer, On upper bounds for toroidal mosaic numbers, Quantum Inf. Process. 12 (2013), no. 9, 2935-2945.
- Samuel J. Lomonaco and Louis H. Kauffman, Quantum Knots and Mosaics, Proc. Sympos. Applied Math., Amer. Math. Soc., Vol. 68 (2010), pp. 177-208.
- Seungsang Oh, Kyungpyo Hong, Ho Lee, Hwa Jeong Lee, and Mi Jeong Yeon, Period and toroidal knot mosaics, arXiv: 1703.04867 [math.GT], 2017.
- Index entries for sequences related to knots
The main diagonal T(n,n) contains
A375357 as a subsequence.
A375357
a(n) is the number of p X p toroidal knot/link mosaics, where p = A000040(n).
Original entry on oeis.org
110, 35237, 52006454275147, 8149229312286883803155895853, 101957128471911748968541302399445156486848984449235985038696169948167385
Offset: 1
An exhaustive list of all 110 distinct 2 X 2 toroidal link mosaics is given collectively by Appendix A of Carlisle and Laufer and Figure 4 of Oh, Hong, Lee, Lee, and Yeon.
- Michael Carlisle and Michael S. Laufer, On upper bounds for toroidal mosaic numbers, Quantum Inf. Process. 12 (2013), no. 9, 2935-2945.
- Samuel J. Lomonaco and Louis H. Kauffman, Quantum Knots and Mosaics, Proc. Sympos. Applied Math., Amer. Math. Soc., Vol. 68 (2010), pp. 177-208.
- Seungsang Oh, Kyungpyo Hong, Ho Lee, Hwa Jeong Lee, and Mi Jeong Yeon, Period and toroidal knot mosaics, arXiv: 1703.04867 [math.GT], 2017.
- Index entries for sequences related to knots
This is a subsequence of the diagonal of
A375356.
-
<A375355","Data"], PolygonalNumber[q], 2] - 2*Sum[f[q, k], {k, 0, (q - 1)/2}];
toroidalcount[q_] := If[q > 2, (1/q^2) * g[q] + (2/q) * Sum[f[q, k], {k, 0, (q - 1)/2}] + 7, 110]
Monitor[Table[toroidalcount[Prime[n]], {n, 1, 5}], Row[{ProgressIndicator[n, {1, 5}], n}, " "]]
A261399
a(1)=1; thereafter a(n) = (2/5)*(9*6^(n-2)+1).
Original entry on oeis.org
1, 4, 22, 130, 778, 4666, 27994, 167962, 1007770, 6046618, 36279706, 217678234, 1306069402, 7836416410, 47018498458, 282110990746, 1692665944474, 10155995666842, 60935974001050, 365615844006298, 2193695064037786, 13162170384226714, 78973022305360282, 473838133832161690
Offset: 1
The number 22, the third term here, is the same 22 seen in
A261400 and illustrated in a link in that entry.
A376155
Number of prime knots with 10 or fewer crossings whose mosaic number is n.
Original entry on oeis.org
0, 1, 0, 1, 6, 96, 146
Offset: 1
There are exactly 6 prime knots that are realizable on a 5 X 5 knot mosaic but not realizable on a 4 X 4 knot mosaic. Namely, these knots are 4_1, 5_1, 5_2, 6_1, 6_2, and 7_4 (see Table 1 of Lee et al.). Hence, a(5) = 6.
- Aaron Heap, Douglas Baldwin, James Canning, and Greg Vinal, Tabulating knot mosaics: Crossing number 10 or less, arXiv: 2303.12138 [math.GT], 2023.
- Hwa Jeong Lee, Ludwig Lewis, Joseph Paat, and Amanda Peiffer, Knot mosaic tabulation, Involve, Vol. 11 (2018), pp. 13-26.
- Samuel J. Lomonaco and Louis H. Kauffman, Quantum Knots and Mosaics, Proc. Sympos. Applied Math., Amer. Math. Soc., Vol. 68 (2010), pp. 177-208.
- Index entries for sequences related to knots
Showing 1-8 of 8 results.
Comments