A375354 T(m,n) is the number of suitably connected m X n Legendrian mosaics read by rows, with 1<=n<=m.
1, 1, 2, 1, 4, 20, 1, 8, 104, 1504, 1, 16, 544, 22208, 948032, 1, 32, 2848, 329216, 40930304, 5204262912, 1, 64, 14912, 4883968, 1772261888, 666548862976, 254112496082944, 1, 128, 78080, 72464384, 76795762688, 85575149027328, 97392800416399360, 111879597850371293184
Offset: 1
Examples
Triangle begins: 1; 1, 2; 1, 4, 20; 1, 8, 104, 1504; 1, 16, 544, 22208, 948032; 1, 32, 2848, 329216, 40930304, 5204262912; ... T(2,2) = 2 since the only suitably connected 2 X 2 Legendrian mosaics are the empty mosaic and the mosaic depicting the Legendrian unknot with maximal Thurston-Bennequin invariant. For all n >= 1, we have T(n,1) = 1 since the only suitably connected Legendrian mosaic with one column is empty.
Links
- Luc Ta, First 11 rows of the triangle, flattened
- Margaret Kipe, Samantha Pezzimenti, Leif Schaumann, Luc Ta, and Wing Hong Tony Wong, Bounds on the mosaic number of Legendrian knots, arXiv: 2410.08064 [math.GT], 2024.
- Seungsang Oh, Kyungpyo Hong, Ho Lee, and Hwa Jeong Lee, Quantum knots and the number of knot mosaics, arXiv: 1412.4460 [math.GT], 2014.
- S. Pezzimenti and A. Pandey, Geography of Legendrian knot mosaics, Journal of Knot Theory and its Ramifications, 31 (2022), article no. 2250002, 1-22.
- Index entries for sequences related to knots
Programs
-
Mathematica
x[0] = o[0] = {{1}}; x[n_] := ArrayFlatten[{{x[n - 1], o[n - 1]}, {o[n - 1], x[n - 1]}}]; o[n_] := ArrayFlatten[{{o[n - 1], x[n - 1]}, {x[n - 1], 3*o[n - 1]}}]; legendrian[m_, n_] := If[m > 1 && n > 1, 2*Total[MatrixPower[x[m - 2] + o[m - 2], n - 2], 2], 1]; Flatten[ParallelTable[legendrian[m, n], {m, 1, 11}, {n, 1, m}]] (* Luc Ta, Aug 13 2024 *)
Comments