A374947
a(n) is the number of suitably connected Legendrian n-Mosaics.
Original entry on oeis.org
1, 2, 20, 1504, 948032, 5204262912, 254112496082944, 111879597850371293184, 448381477417976615986528256, 16469260582635747355818375736459264, 5571666891811926168753521842383673521864704, 17424018517043252553551626372130243982114254609186816
Offset: 1
For n = 2 there are exactly a(2) = 2 suitably connected Legendrian 2-mosaics, namely the empty mosaic and the Legendrian unknot with maximal Thurston-Bennequin invariant.
- Margaret Kipe, Rust
- Margaret Kipe, Samantha Pezzimenti, Leif Schaumann, Luc Ta, and Wing Hong Tony Wong, Bounds on the mosaic number of Legendrian knots, arXiv: 2410.08064 [math.GT], 2024.
- Seungsang Oh, Kyungpyo Hong, Ho Lee, and Hwa Jeong Lee, Quantum knots and the number of knot mosaics, arXiv: 1412.4460 [math.GT], 2014.
- S. Pezzimenti and A. Pandey, Geography of Legendrian knot mosaics, Journal of Knot Theory and its Ramifications, 31 (2022), article no. 2250002, 1-22.
- Index entries for sequences related to knots
Cf.
A261400,
A375354,
A374939,
A374942,
A374943,
A374944,
A374945,
A374946,
A375353,
A375355,
A375356,
A375357.
-
x[0] = o[0] = {{1}};
x[n_] := ArrayFlatten[{{x[n - 1], o[n - 1]}, {o[n - 1], x[n - 1]}}];
o[n_] := ArrayFlatten[{{o[n - 1], x[n - 1]}, {x[n - 1], 3*o[n - 1]}}];
legendrianSquare[n_] := If[n > 1, 2*Total[MatrixPower[x[n - 2] + o[n - 2], n - 2], 2], 1];
Flatten[ParallelTable[legendrianSquare[n], {n, 1, 11}]] (* This program is adapted from Theorem 1 of Oh, Hong, Lee, and Lee (see Links, cf. A375354). - Luc Ta, Aug 20 2024 *)
-
// See Margaret Kipe link
a(7)-a(11) from
Luc Ta, Aug 20 2024
A261400
Number of n X n knot mosaics.
Original entry on oeis.org
1, 2, 22, 2594, 4183954, 101393411126, 38572794946976686, 234855052870954505606714, 23054099362200397056093750003442, 36564627559441095000442883434988307728126, 937273142571326346553334567317274833729462713413038
Offset: 1
- Luc Ta, Table of n, a(n) for n = 1..14
- K. Hong, H. Lee, H. J. Lee and S. Oh, Small knot mosaics and partition matrices, J. Phys. A: Math. Theor. 47 (2014) 435201; arXiv:1312.4009 [math.GT].
- K. Hong, H. J. Lee, H. Lee and S. Oh, Upper bound on the total number of knot n-mosaics, J. Knot Theory Ramifications, Volume 23, Issue 13, November 2014; arXiv:1303.7044 [math.GT].
- Hwa Jeong Lee, Kyungpyo Hong, Ho Lee, and Seungsang Oh, Mosaic number of knots, arXiv: 1301.6041 [math.GT], 2014.
- Samuel J. Lomonaco and Louis H. Kauffman, Quantum Knots and Mosaics, Proc. Sympos. Applied Math., Amer. Math. Soc., Vol. 68 (2010), pp. 177-208.
- Samuel J. Lomonaco and Louis H. Kauffman, Illustration for a(3) = 22, from "Quantum Knots and Mosaics", 2010, with permission.
- Seungsang Oh, Kyungpyo Hong, Ho Lee, and Hwa Jeong Lee, Quantum knots and the number of knot mosaics, arXiv: 1412.4460 [math.GT], 2014.
- Index entries for sequences related to knots
Reminiscent of (but of course different from)
A200000.
The term 22 is the same 22 that appears in
A261399.
a(n) is the main diagonal of
A375353.
-
x[0] = o[0] = {{1}};
x[n_] := ArrayFlatten[{{x[n - 1], o[n - 1]}, {o[n - 1], x[n - 1]}}];
o[n_] := ArrayFlatten[{{o[n - 1], x[n - 1]}, {x[n - 1], 4*o[n - 1]}}];
mosaicsSquare[n_] := If[n > 1, 2*Total[MatrixPower[x[n - 2] + o[n - 2], n - 2], 2], 1];
Flatten[ParallelTable[mosaicsSquare[n], {n, 1, 11}]] (* This program is based on Theorem 1 of Oh, Hong, Lee, and Lee (see Links). - Luc Ta, Aug 13 2024 *)
Typo in a(11) corrected by
Luc Ta, Aug 13 2024
A375353
T(m,n) = Number of m X n knot/link mosaics read by rows, with 1<=n<=m.
Original entry on oeis.org
1, 1, 2, 1, 4, 22, 1, 8, 130, 2594, 1, 16, 778, 54226, 4183954, 1, 32, 4666, 1144526, 331745962, 101393411126, 1, 64, 27994, 24204022, 26492828950, 31507552821550, 38572794946976686, 1, 128, 167962, 512057546, 2119630825150, 9841277889785426, 47696523856560453790, 234855052870954505606714
Offset: 1
Triangle begins:
1;
1, 2;
1, 4, 22;
1, 8, 130, 2594;
1, 16, 778, 54226, 4183954;
1, 32, 4666, 1144526, 331745962, 101393411126;
...
T(2,2) = 2 since the only suitably connected 2 X 2 link mosaics are the empty mosaic and the mosaic depicting an unknot attaining its minimal crossing number.
For all n >= 1, we have T(n,1) = 1 since the only suitably connected mosaic with one column is empty.
- Luc Ta, First 11 rows of the triangle, flattened
- K. Hong, H. Lee, H. J. Lee and S. Oh, Small knot mosaics and partition matrices, J. Phys. A: Math. Theor. 47 (2014) 435201; arXiv:1312.4009 [math.GT], 2013-2014.
- Samuel J. Lomonaco and Louis H. Kauffman, Quantum Knots and Mosaics, Proc. Sympos. Applied Math., Amer. Math. Soc., Vol. 68 (2010), pp. 177-208.
- Seungsang Oh, Kyungpyo Hong, Ho Lee, and Hwa Jeong Lee, Quantum knots and the number of knot mosaics, arXiv: 1412.4460 [math.GT], 2014.
- Index entries for sequences related to knots
The main diagonal T(n,n) is
A261400.
-
x[0] = o[0] = {{1}};
x[n_] := ArrayFlatten[{{x[n - 1], o[n - 1]}, {o[n - 1], x[n - 1]}}];
o[n_] := ArrayFlatten[{{o[n - 1], x[n - 1]}, {x[n - 1], 4*o[n - 1]}}];
mosaics[m_, n_] := If[m > 1 && n > 1, 2*Total[MatrixPower[x[m - 2] + o[m - 2], n - 2], 2], 1];
Flatten[ParallelTable[mosaics[m, n], {m, 1, 11}, {n, 1, m}]] (* Luc Ta, Aug 13 2024 *)
A375355
T(m, n) is the number of m X n period knot/link mosaics read by rows, with 1 <= n <= m.
Original entry on oeis.org
7, 29, 359, 133, 5519, 316249, 641, 91283, 19946891, 4934695175, 3157, 1549799, 1298065813, 1268810595131, 1300161356831107, 15689, 26576579, 85436799491, 330595705214327, 1353434715973001999, 5644698772550126097593, 78253, 457549079, 5648174618317, 86566215054880187, 1416905739955631598043, 23696846086162116561085541, 399312236302057306354637147077
Offset: 1
Triangle begins:
7;
29, 359;
133, 5519, 316249;
641, 91283, 19946891, 4934695175;
3157, 1549799, 1298065813, 1268810595131, 1300161356831107;
...
T(1,1) = 7 since the only period 1 X 1 link mosaics are given by the tiles T_0 and T_5 through T_10 of Lomonaco and Kauffman.
- Luc Ta, First 11 rows of the triangle, flattened
- Samuel J. Lomonaco and Louis H. Kauffman, Quantum Knots and Mosaics, Proc. Sympos. Applied Math., Amer. Math. Soc., Vol. 68 (2010), pp. 177-208.
- Seungsang Oh, Kyungpyo Hong, Ho Lee, Hwa Jeong Lee, and Mi Jeong Yeon, Period and toroidal knot mosaics, arXiv: 1703.04867 [math.GT], 2017.
- Index entries for sequences related to knots
-
x[0] = o[0] = {{1}}; y[0] = p[0] = {{0}};
x[n_] := ArrayFlatten[{{x[n - 1], p[n - 1]}, {p[n - 1], x[n - 1]}}];
y[n_] := ArrayFlatten[{{y[n - 1], o[n - 1]}, {o[n - 1], y[n - 1]}}];
o[n_] := ArrayFlatten[{{o[n - 1], y[n - 1]}, {y[n - 1], 4 * o[n - 1]}}];
p[n_] := ArrayFlatten[{{p[n - 1], x[n - 1]}, {x[n - 1], 4 * p[n - 1]}}];
periodcount[m_, n_] := Tr[MatrixPower[x[m] + o[m], n]];
Flatten[ParallelTable[periodcount[m, n], {m, 1, 11}, {n, 1, m}]]
A375356
T(m, n) is the number of m X n toroidal knot/link mosaics read by rows, with 1 <= n <= m.
Original entry on oeis.org
7, 18, 110, 49, 954, 35237, 171, 11591, 1662837, 308435024, 637, 155310, 86538181, 63440607699, 52006454275147
Offset: 1
Triangle begins:
7;
18, 110;
49, 954, 35237;
171, 11591, 1662837, 308435024;
637, 155310, 86538181, 63440607699, 52006454275147;
...
The only period 1 X 1 link mosaics are given by the tiles T_0 and T_5 through T_10 of Lomonaco and Kauffman. None of these mosaics are cyclic rotations of rows and columns of the others (since there are no rows or columns to permute in the first place). Therefore, T(1,1) = 7.
An exhaustive list of all 110 distinct 2 X 2 toroidal link mosaics is given collectively by Appendix A of Carlisle and Laufer and Figure 4 of Oh, Hong, Lee, Lee, and Yeon.
- Michael Carlisle and Michael S. Laufer, On upper bounds for toroidal mosaic numbers, Quantum Inf. Process. 12 (2013), no. 9, 2935-2945.
- Samuel J. Lomonaco and Louis H. Kauffman, Quantum Knots and Mosaics, Proc. Sympos. Applied Math., Amer. Math. Soc., Vol. 68 (2010), pp. 177-208.
- Seungsang Oh, Kyungpyo Hong, Ho Lee, Hwa Jeong Lee, and Mi Jeong Yeon, Period and toroidal knot mosaics, arXiv: 1703.04867 [math.GT], 2017.
- Index entries for sequences related to knots
The main diagonal T(n,n) contains
A375357 as a subsequence.
Showing 1-5 of 5 results.
Comments