A261423 Largest palindrome <= n.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 77, 77
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, Palindromic Number
- Wikipedia, Palindromic number
- Index entries for sequences related to palindromes
Crossrefs
Programs
-
Haskell
a261423 n = a261423_list !! n a261423_list = tail a261914_list -- Reinhard Zumkeller, Sep 16 2015
-
Maple
# P has list of palindromes palfloor:=proc(n) global P; local i; for i from 1 to nops(P) do if P[i]=n then return(n); fi; if P[i]>n then return(P[i-1]); fi; od: end;
-
Mathematica
palQ[n_] := Block[{d = IntegerDigits@ n}, d == Reverse@ d]; Table[k = n; While[Nand[palQ@ k, k > -1], k--]; k, {n, 0, 78}] (* Michael De Vlieger, Sep 09 2015 *)
-
PARI
A261423(n,d=digits(n),m=sum(k=1,#d\2,d[k]*10^(k-1)))={if( n%10^(#d\2)
M. F. Hasler, Sep 08 2015, minor edit on Sep 05 2018 -
Python
def P(n): s = str(n); h = s[:(len(s)+1)//2]; return int(h + h[-1-len(s)%2::-1]) def a(n): s = str(n) if s == '1'+'0'*(len(s)-1) and n > 1: return n - 1 Pn = P(n) return Pn if Pn <= n else P(n - 10**(len(s)//2)) print([a(n) for n in range(79)]) # Michael S. Branicky, Jun 25 2021
Formula
n - a(n) < 1.1*10^floor(d/2), where d = floor(log_10(n)) + 1 is the number of digits of n. - M. F. Hasler, Sep 05 2018
Comments