A261429 Number of permutations p of [3n] without fixed points such that p^9 = Id.
1, 2, 40, 42560, 17987200, 8116908800, 43924225945600, 108050180446208000, 215140299047145472000, 2906668948375666073600000, 21059302309493030917734400000, 112131367456110324265700556800000, 2891761281909068919518711775232000000
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..165
Programs
-
Maple
b:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1, add(mul(n-i, i=1..j-1)*b(n-j), j=[3,9]))) end: a:= n-> b(3*n): seq(a(n), n=0..15);
Formula
a(n) = (3n)! * [x^(3n)] exp(x^3/3+x^9/9).