A261437 Least positive integer k such that k*n+1 = prime(p) and k^2*n+1 = prime(q) for some pair of primes p and q.
2, 1, 286, 1, 7290, 21, 18, 2472, 12, 1, 20460, 20, 20692, 105, 4392, 1, 96816, 1327, 360, 264, 19850, 2734, 1854, 5293, 930, 29526, 98, 622, 9222, 1, 6816, 924, 61614, 70, 53760, 45, 32190, 9687, 5510, 1, 128070, 148, 8772, 23478, 404, 801, 1830, 5, 9912, 7662, 1100, 8211, 1116, 9997, 630, 4965, 936, 1, 87570, 759
Offset: 1
Keywords
Examples
a(3) = 286 since 286*3+1 = 859 = prime(149) with 149 prime, and 286^2*3+1 = 245389 = prime(21661) with 21661 prime.
References
- Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..200
- Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014.
Programs
-
Mathematica
PQ[p_]:=PrimeQ[p]&&PrimeQ[PrimePi[p]] Do[k=0;Label[bb];k=k+1;If[PQ[k*n+1]&&PQ[k^2*n+1],Goto[aa],Goto[bb]];Label[aa];Print[n," ", k];Continue,{n,1,60}]
Comments