A261583 Least positive integer k such that prime(prime(prime(k)))+ prime(prime(prime(k*n))) = 2*prime(prime(p)) for some prime p.
1, 755, 4648, 1335, 1096, 14708, 5964, 636, 1063, 13019, 9808, 2776, 2580, 2797, 6421, 1573, 2432, 4790, 862, 1855, 566, 2145, 18554, 35634, 5264, 1293, 39402, 1445, 2397, 17930, 586, 2526, 24571, 18403, 5480, 366, 5159, 9710, 179, 4469, 6757, 7866, 263, 1701, 2941, 477, 5032, 10705, 3494, 8597, 953, 11954, 2586, 689, 9456, 1309, 8651, 12538, 4106, 13762
Offset: 1
Keywords
Examples
a(2) = 755 since prime(prime(prime(755))) + prime(prime(prime(755*2))) = prime(prime(5741)) + prime(prime(12641)) = prime(56611) + prime(135671) = 700897 + 1808581 = 2*1254739 = 2*prime(96797) = 2*prime(prime(9319)) with 9319 prime.
References
- Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..200
- Zhi-Wei Sun, Checking part (i) of the conjecture for r = a/b with a,b = 1..100
- B. Green and T. Tao, The primes contain arbitrary long arithmetic progressions, Annals of Math. 167(2008), 481-547.
- Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014.
Programs
-
Mathematica
f[n_]:=Prime[Prime[Prime[n]]] PQ[p_]:=PrimeQ[p]&&PrimeQ[PrimePi[p]]&&PrimeQ[PrimePi[PrimePi[p]]] Do[k=0;Label[bb];k=k+1;If[PQ[(f[k]+f[k*n])/2],Goto[aa],Goto[bb]];Label[aa];Print[n," ", k];Continue,{n,1,60}]
Comments