cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A262082 Array of coefficients A(n,k) of the formal power series P(n,x) read by upwards antidiagonals, where P(n,x) = Sum_{k>=0} A(n,k)*x^k = 1 + x*P(n,x)^(1*n) + x^2*P(n,x)^(2*n) + x^3*P(n,x)^(3*n) for n >= 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 5, 0, 1, 1, 4, 12, 13, 0, 1, 1, 5, 22, 54, 36, 0, 1, 1, 6, 35, 139, 262, 104, 0, 1, 1, 7, 51, 284, 953, 1337, 309, 0, 1, 1, 8, 70, 505, 2509, 6894, 7072, 939, 0, 1, 1, 9, 92, 818, 5455, 23426, 51796, 38426, 2905, 0, 1, 1, 10
Offset: 0

Views

Author

Werner Schulte, Sep 10 2015

Keywords

Comments

The terms define the array A(n,k):
n\k: 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1 1 1 1 0 0 0 0 0 0 0 ...
1: 1 1 2 5 13 36 104 309 939 2905 ...
2: 1 1 3 12 54 262 1337 7072 38426 ...
3: 1 1 4 22 139 953 6894 51796 400269 ...
4: 1 1 5 35 284 2509 23426 ...
5: 1 1 6 51 505 5455 62336 ...
6: 1 1 7 70 818 ...
7: 1 1 8 92 ...
8: 1 1 9 ...
9: 1 1 10 ...
10: 1 1 ...
11: 1 ...
etc.
For row 1 see A036765, for row 2 see A186241, and for row 3 see A200731.
Conjecture 1: The A(n,k), here n > 0, are the number of lattice paths, if
(a) length of path is k*n (for the k-th term of row n),
(b) allowed steps are (1,-1), (1,-1+n), (1,-1+2*n), and (1,-1+3*n),
(c) you start at (0,0), end at (k*n,0), and
(d) never cross the x-axis.
Conjecture 2: The coefficients B(m,n,k) of the P(n,x)^m (see the formula below), m > 0 and n > 0, are the number of lattice paths, if
(a) length of path is k*n+m-1 (k-th coefficient of P(n,x)^m),
(b) allowed steps are (1,-1), (1,-1+n), (1,-1+2*n), and (1,-1+3*n),
(c) you start at (0,m-1), end at (k*n+m-1,0), and
(d) never cross the x-axis.

Examples

			The terms of the array A(n,k) read by upwards antidiagonals define the triangle T(n,m) = A(n-m,m) for 0 <= m <= n, i.e.,
n\m 0  1   2   3    4     5     6     7    8  9 ...
0:  1
1:  1  1
2:  1  1   1
3:  1  1   2   1
4:  1  1   3   5    0
5:  1  1   4  12   13     0
6:  1  1   5  22   54    36     0
7:  1  1   6  35  139   262   104     0
8:  1  1   7  51  284   953  1337   309    0
9:  1  1   8  70  505  2509  6894  7072  939  0
etc. [reformatted by _Wolfdieter Lang_, Oct 15 2015]
		

Crossrefs

Formula

A(n,k) = 1/(n*k+1) * Sum_{j=0..k} (-2)^j*binomial(n*k+1,j)* binomial(3*n*k+3-2*j,k-j) for n >= 0, and k >= 0. (conjectured)
A(n,0) = A(n,1) = 1, n >= 0;
A(n,2) = n+1, n >= 0;
A(n,3) = (3*n^2+5*n+2)/2, n >= 0;
A(n,4) = (8*n^3+18*n^2+13*n)/3, n >= 0;
A(n,5) = (125*n^4+350*n^3+355*n^2+34*n)/24, n >= 0.
The g.f. P(n,x) of row n of the array A(n,k) satisfy:
P(n,x) = P(n-1,x*P(n,x)), n > 0;
P(n,x) = P(n-2,x*P(n,x)^2), n > 1;
etc.
P(n,x) = P(0,x*P(n,x)^n), n >= 0.
The coefficients B(m,n,k) of the P(n,x)^m are:
B(m,n,k) = m/(n*k+m) * Sum_{j=0..k} (-2)^j*binomial(n*k+m,j)* binomial(3*n*k+3*m-2*j,k-j) for m > 0, n > 0, and k >= 0. (conjectured)
P(n,x) = exp(Sum_{k>=1} 1/(n*k)*(Sum_{j=0..k} (-2)^j*binomial(n*k,j)* binomial(3*n*k-2*j,k-j))) for n > 0 (conjectured); (see for n=1: A036765, for n=2: A186241, and for n=3: A200731).
P(n,x/(1+x+x^2+x^3)^n) = 1+x+x^2+x^3 for n >= 0. - Werner Schulte, Nov 20 2015
Showing 1-1 of 1 results.