A261444 Expansion of f(x^3)^2 * f(-x^6)^2 / f(-x^2) in powers of x where f() is a Ramanujan theta function.
1, 0, 1, 2, 2, 2, 0, 4, 2, 0, 1, 4, 4, 2, 2, 4, 5, 0, 2, 2, 6, 4, 2, 4, 6, 0, 0, 6, 4, 2, 4, 8, 7, 0, 2, 10, 4, 6, 0, 4, 6, 0, 1, 6, 8, 6, 4, 8, 4, 0, 4, 8, 10, 4, 2, 8, 8, 0, 2, 6, 12, 4, 4, 8, 8, 0, 5, 8, 6, 4, 0, 8, 14, 0, 2, 10, 8, 10, 2, 8, 11, 0, 6, 6, 6
Offset: 0
Keywords
Examples
G.f. = 1 + x^2 + 2*x^3 + 2*x^4 + 2*x^5 + 4*x^7 + 2*x^8 + x^10 + ... G.f. = q^2 + q^8 + 2*q^11 + 2*q^14 + 2*q^17 + 4*q^23 + 2*q^26 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Crossrefs
Cf. A261426.
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ QPochhammer[ -x^3]^2 QPochhammer[ x^6]^2 / QPochhammer[ x^2], {x, 0, n}];
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^6 + A)^8 / (eta(x^2 + A) * eta(x^3 + A)^2 * eta(x^12 + A)^2), n))};
Formula
Expansion of q^(-2/3) * eta(q^6)^8 / (eta(q^2) * eta(q^3)^2 * eta(q^12)^2) in powers of q.
Euler transform of period 12 sequence [ 0, 1, 2, 1, 0, -5, 0, 1, 2, 1, 0, -3, ...].
a(n) = A261426(2*n + 1).
Comments