cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261445 Expansion of f(x, x^3) * f(x, x^2)^3 in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, 4, 9, 14, 16, 18, 21, 28, 36, 38, 40, 36, 43, 52, 54, 62, 56, 72, 74, 72, 81, 64, 88, 90, 98, 100, 72, 110, 112, 126, 133, 104, 126, 108, 136, 144, 112, 148, 144, 158, 144, 144, 183, 172, 180, 182, 152, 162, 194, 196, 198, 160, 216, 216, 180, 224, 189, 230
Offset: 0

Views

Author

Michael Somos, Aug 18 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 4*x + 9*x^2 + 14*x^3 + 16*x^4 + 18*x^5 + 21*x^6 + 28*x^7 + ...
G.f. = q + 4*q^5 + 9*q^9 + 14*q^13 + 16*q^17 + 18*q^21 + 21*q^25 + 28*q^29 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x^3] / (QPochhammer[ x, x^6] QPochhammer[ x^5, x^6]))^3 EllipticTheta[ 2, 0, x^(1/2)] / (2 x^(1/8)), {x, 0, n}];
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x]^6 EllipticTheta[ 4, 0, x^3]^3 EllipticTheta[ 4, 0, x], {x, 0, n}]; (* Michael Somos, Nov 13 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^2]^3 EllipticTheta[ 4, 0, x^3]^3 / EllipticTheta[ 4, 0, x]^2, {x, 0, n}]; (* Michael Somos, Nov 13 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^3 + A)^6 / (eta(x + A)^4 * eta(x^6 + A)^3), n))};

Formula

Expansion of f(-x^2)^3 * phi(-x^3)^3 / phi(-x)^2 in powers of x where phi(), f() are Ramanujan theta functions.
Expansion of q^(-1/4) * eta(q^2)^5 * eta(q^3)^6 / (eta(q)^4 * eta(q^6)^3) in powers of q.
Euler transform of period 6 sequence [4, -1, -2, -1, 4, -4, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (24 t)) = 12^(1/2) (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A260301. - Michael Somos, Nov 13 2015
a(n) = A260109(2*n) = A263021(3*n) = A124815(4*n + 1) = A209613(4*n + 1). - Michael Somos, Nov 13 2015
a(3*n + 1) = 4 * A260165(n). a(3*n + 2) = 9 * A263021(n). - Michael Somos, Nov 13 2015