A261446 Expansion of f(-x^3, -x^3) * f(-x, -x^5) / f(-x, -x)^2 in powers of x where f(,) is Ramanujan's general theta function.
1, 3, 8, 18, 38, 75, 140, 252, 439, 744, 1232, 1998, 3182, 4986, 7700, 11736, 17673, 26322, 38808, 56682, 82070, 117867, 167996, 237744, 334202, 466836, 648224, 895014, 1229148, 1679436, 2283568, 3090672, 4164578, 5587941, 7467464, 9940482, 13183238, 17421288
Offset: 0
Keywords
Examples
G.f. = 1 + 3*x + 8*x^2 + 18*x^3 + 38*x^4 + 75*x^5 + 140*x^6 + 252*x^7 + ... G.f. = q + 3*q^4 + 8*q^7 + 18*q^10 + 38*q^13 + 75*q^16 + 140*q^19 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Crossrefs
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ QPochhammer[ x^2] QPochhammer[ x^3] QPochhammer[ x^6] / QPochhammer[ x]^3, {x, 0, n}]; nmax=60; CoefficientList[Series[Product[(1-x^(2*k)) * (1-x^(3*k)) * (1-x^(6*k)) / (1-x^k)^3,{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Oct 14 2015 *)
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A) * eta(x^6 + A) / eta(x + A)^3, n))};
Formula
Expansion of f(-x^2) * f(-x^3) * f(-x^6) / f(-x)^3 in powers of x where f() is a Ramanujan theta function.
Expansion of q^(-1/3) * eta(q^2) * eta(q^3) * eta(q^6) / eta(q)^3 in powers of q.
Euler transform of period 6 sequence [ 3, 2, 2, 2, 3, 0, ...].
Convolution inverse is A132301.
a(n) ~ exp(2*Pi*sqrt(n/3)) / (4 * 3^(5/4) * n^(3/4)). - Vaclav Kotesovec, Oct 14 2015
Comments