A261461 a(n) is the smallest nonzero number that is not a substring of n in its binary representation.
1, 2, 3, 2, 3, 3, 4, 2, 3, 3, 3, 4, 5, 4, 4, 2, 3, 3, 3, 5, 3, 3, 4, 4, 5, 5, 4, 4, 5, 4, 4, 2, 3, 3, 3, 5, 3, 3, 5, 5, 3, 3, 3, 4, 7, 4, 4, 4, 5, 5, 5, 5, 7, 4, 4, 4, 5, 5, 4, 4, 5, 4, 4, 2, 3, 3, 3, 5, 3, 3, 5, 5, 3, 3, 3, 6, 5, 7, 5, 5, 3, 3, 3, 6, 3, 3
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- David Consiglio, Jr., Python Program
Crossrefs
Programs
-
Haskell
import Data.List (isInfixOf) a261461 x = f $ tail a030308_tabf where f (cs:css) = if isInfixOf cs (a030308_row x) then f css else foldr (\d v -> 2 * v + d) 0 cs
-
Mathematica
fQ[m_, n_] := Block[{g}, g[x_] := ToString@ FromDigits@ IntegerDigits[x, 2]; StringContainsQ[g@ n, g@ m]]; Table[k = 1; While[fQ[k, n] && k < n, k++]; k, {n, 85}] (* Michael De Vlieger, Sep 21 2015 *)
-
Python
from itertools import count def a(n): b, k = bin(n)[2:], 1 return next(k for k in count(1) if bin(k)[2:] not in b) print([a(n) for n in range(86)]) # Michael S. Branicky, Feb 26 2023
Formula
a(n) = A144016(n) + 1 for any n > 0. - Rémy Sigrist, Mar 10 2018
Comments