cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261475 Number of binary strings of length n+10 such that the smallest number whose binary representation is not visible in the string is 10.

Original entry on oeis.org

0, 2, 24, 130, 471, 1401, 3734, 9258, 21826, 49561, 109261, 235327, 497495, 1035744, 2129126, 4330524, 8729070, 17460382, 34695315, 68549561, 134764551, 263788114, 514366212, 999590406, 1936741832, 3742534848, 7214885826, 13879427752, 26649404779, 51081190435
Offset: 0

Views

Author

Alois P. Heinz, Aug 20 2015

Keywords

Crossrefs

Column k=10 of A261019.

Formula

G.f.: -(4*x^38 +6*x^37 +7*x^36 +13*x^35 -40*x^34 -39*x^33 -144*x^32 -197*x^31 -142*x^30 -230*x^29 +157*x^28 +66*x^27 +679*x^26 +153*x^25 +850*x^24 -429*x^23 +260*x^22 -820*x^21 -624*x^20 +294*x^19 -1720*x^18 +3212*x^17 -4270*x^16 +6808*x^15 -7839*x^14 +8816*x^13 -8988*x^12 +7604*x^11 -6159*x^10 +4152*x^9 -2314*x^8 +1162*x^7 -331*x^6 -4*x^5 +48*x^4 -57*x^3 +24*x^2 +2*x-2)*x / ((x^2+1) *(x^2+x+1) *(x^2-x+1) *(x^2+x-1) *(2*x^3+x-1) *(x^3-x^2+2*x-1) *(x^4+x^3-1) *(x^4+x-1) *(x^5+x^3+x-1) *(x^5+x^4+x-1) *(x^4+2*x^3-1) *(x^4-2*x^3+x^2-2*x+1) *(x^3+x-1) *(x-1)^3).
a(n) = A261019(n+10,10).