cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261491 a(n) = ceiling(2 + sqrt(8*n-4)).

Original entry on oeis.org

4, 6, 7, 8, 8, 9, 10, 10, 11, 11, 12, 12, 12, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 29
Offset: 1

Views

Author

Juhani Heino, Aug 21 2015

Keywords

Comments

Conjecture: a(n) = minimal number of stones needed to surround area n in the middle of a Go board (infinite if needed).
The formula was constructed this way: when the area is in a diamond shape with x^2+(x-1)^2 places, it can be surrounded by 4x stones. So, a(1)=4, a(5)=8, a(13)=12 etc.
The positive solution to the quadratic equation 2x^2 - 2x + 1 = n is x = (2 + sqrt(8n-4))/4. And since a(n)=4x, the formula a(n) = 2 + sqrt(8n-4) holds for the positions mentioned. But incredibly also the intermediate results seem to match when the ceiling function is used.
The opposite of this would be an area of 1 X n; it demands the maximal number of stones, a(n) = 2 + 2n.
Equivalently, a(n) is the minimum (cell) perimeter of any polyomino of n cells. - Sean A. Irvine, Oct 17 2020

Examples

			Start with the 5-cell area that is occupied by 0's and surrounded by stones 1..8. Add those surrounding stones to the area, one by one. At points 1, 2, 4 and 6, the number of surrounding stones is increased; elsewhere, it is not.
Next, do the same with stones A..L. At points A, C, F and I, the number of surrounding stones is increased; elsewhere, it is not.
___D___
__A5C__
_B104E_
G30007J
_F206I_
__H8K__
___L___
		

Crossrefs

Cf. A001971.

Programs

Formula

a(n) = ceiling(2 + sqrt(8*n-4)).
For n > 2, a(n) - a(n-1) = 1 if n is of the form 2*(k^2+k+1), 2*k^2 + 1 or (k^2+k)/2 + 1, otherwise 0. - Jianing Song, Aug 10 2021