cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A257549 Decimal expansion of zeta''(0) (negated).

Original entry on oeis.org

2, 0, 0, 6, 3, 5, 6, 4, 5, 5, 9, 0, 8, 5, 8, 4, 8, 5, 1, 2, 1, 0, 1, 0, 0, 0, 2, 6, 7, 2, 9, 9, 6, 0, 4, 3, 8, 1, 9, 8, 9, 9, 4, 9, 1, 0, 1, 6, 0, 9, 1, 9, 8, 8, 1, 1, 6, 9, 8, 6, 8, 2, 8, 0, 8, 5, 7, 7, 6, 0, 0, 7, 8, 3, 9, 8, 0, 8, 5, 3, 4, 2, 7, 6, 4, 8, 7, 0, 5, 6, 0, 3, 2, 8, 0, 8, 3, 9, 2, 4, 7, 2, 6, 6
Offset: 1

Views

Author

Jean-François Alcover, Apr 29 2015

Keywords

Comments

Essentially the same as A245273. - R. J. Mathar, Apr 30 2015

Examples

			2.00635645590858485121010002672996043819899491016091988116986828...
		

Crossrefs

Programs

  • Maple
    evalf(-Zeta(2, 0), 120); # Vaclav Kotesovec, Apr 29 2015
  • Mathematica
    RealDigits[ StieltjesGamma[1] + EulerGamma^2/2 - Pi^2/24 - (1/2)*(Log[2] + Log[Pi])^2, 10, 104] // First
  • PARI
    -zeta''(0) \\ Charles R Greathouse IV, Mar 10 2016

Formula

zeta''(0) = gamma_1 + gamma^2/2 - Pi^2/24 - (1/2)*(log(2)+log(Pi))^2, where gamma_1 is the first Stieltjes constant.

A385612 Decimal expansion zeta''''(0) (negated).

Original entry on oeis.org

2, 3, 9, 9, 7, 1, 0, 3, 1, 8, 8, 0, 1, 3, 7, 0, 7, 9, 5, 8, 9, 8, 7, 2, 1, 9, 5, 2, 7, 7, 4, 1, 0, 0, 5, 6, 6, 1, 8, 9, 1, 1, 3, 9, 9, 3, 4, 9, 2, 1, 7, 0, 3, 4, 2, 4, 9, 7, 6, 0, 0, 9, 3, 3, 3, 0, 4, 6, 3, 8, 2, 9, 3, 8, 6, 3, 3, 4, 4, 9, 9, 1, 3, 8, 2, 8, 6, 1, 8, 2, 2, 7, 5, 7, 8, 1, 3, 3, 4, 6, 9, 4, 9, 0, 3
Offset: 2

Views

Author

Artur Jasinski, Jul 04 2025

Keywords

Comments

n-th derivative of zeta function at 0 is close to -n!, which here is the present constant close to 4! = 24.

Examples

			23.997103188013707958987219527741...
		

Crossrefs

Programs

  • Maple
    evalf(-Zeta(4, 0), 120); # Vaclav Kotesovec, Jul 04 2025
  • Mathematica
    RealDigits[-3 EulerGamma^4/2 - EulerGamma^2 Pi^2/4 + 19 Pi^4/480 - 4 EulerGamma^3 Log[2 Pi] - 3 EulerGamma^2 Log[2Pi]^2 +  Pi^2 Log[2 Pi]^2/4 + Log[2 Pi]^4/2 - 6 EulerGamma^2 StieltjesGamma[1] - Pi^2 StieltjesGamma[1]/2 - 12 EulerGamma Log[2 Pi] StieltjesGamma[1] - 6 Log[2 Pi]^2 StieltjesGamma[1] - 6 EulerGamma StieltjesGamma[2] - 6 Log[2Pi] StieltjesGamma[2] - 2 StieltjesGamma[3] + 4 Log[2 Pi] Zeta[3],10,105][[1]]
  • PARI
    -zeta''''(0)

Formula

Equals -3*gamma^4/2 - gamma^2*Pi^2/4 + 19*Pi^4/480 - 4*gamma^3*log(2*Pi) -3*gamma^2*log(2*Pi)^2 + Pi^2*log(2*Pi)^2/4 + log(2*Pi)^4/2 - 6*gamma^2*StieltjesGamma(1) - Pi^2*StieltjesGamma(1)/2 - 12*gamma*log(2*Pi)* StieltjesGamma(1) - 6*log(2*Pi)^2*StieltjesGamma(1) - 6*gamma*StieltjesGamma(2) - 6*log(2*Pi)*StieltjesGamma(2) - 2*StieltjesGamma(3) + 4*log(2*Pi)*zeta(3).
Showing 1-2 of 2 results.