A261524 Odd numbers n such that degree(gcd( 1 + x^n, 1 + (1+x)^n )) > 1, where the polynomials are over GF(2).
3, 7, 9, 15, 21, 27, 31, 33, 35, 39, 45, 49, 51, 57, 63, 69, 73, 75, 77, 81, 85, 87, 91, 93, 99, 105, 111, 117, 119, 123, 127, 129, 133, 135, 141, 147, 153, 155, 159, 161, 165, 171, 175, 177, 183, 189, 195, 201, 203, 207, 213, 217, 219, 225, 231, 237, 243, 245, 249, 255, 259, 261, 267, 273, 279, 285, 287, 291, 297, 301
Offset: 1
Keywords
Links
- Joerg Arndt, Table of n, a(n) for n = 1..23300
- László Babai, The Fourier Transform and Equations over Finite Abelian Groups, Department of Computer Science, University of Chicago.
- Solomon W. Golomb and Pey-Feng Lee, Irreducible Polynomials Which Divide Trinomials over GF(2), IEEE Transactions on Information Theory, vol.53, no.2, pp.768-774 (February-2007).
Crossrefs
Programs
-
Maple
filter:= proc(n) degree(Gcd(1+x^n, 1+(1+x)^n) mod 2)>1 end proc: select(filter, [2*i+1 $ i=1..200]); # Robert Israel, Sep 03 2015
-
Mathematica
okQ[n_] := Exponent[PolynomialGCD[1+x^n, 1+(1+x)^n, Modulus -> 2], x] > 1; Select[Range[1, 301, 2], okQ] (* Jean-François Alcover, Apr 02 2019 *)
-
PARI
W(n)=my(e=Mod(1,2)); poldegree(gcd(e*(1+x^n), e*(1+(1+x)^n))) > 1; forstep(n=1,301,2, if( W(n) , print1(n,", ") ) );
-
PARI
isA261524(n,p=2) = my(d=znorder(Mod(p,n)), c=ffgen(p^d,'c), g=ffprimroot(c)); forstep(e=0, p^d-2, (p^d-1)/n, if((g^e+1)^n==1, return(1))); return(0) \\ Jianing Song, Oct 14 2023, based on the equivalence of gcd(x^m-1, (x+1)^m-1) != 1 and two ((q-1)/m)-th powers in F_q differing by 1 (see Comments)
-
Sage
x = polygen(GF(2), 'x') [n for n in range(1, 10^3, 2) if gcd( 1+x^n, 1+(1+x)^n ).degree() > 1] # Joerg Arndt, Sep 08 2015
Comments