A261526 Expansion of (H(-x) / chi(-x))^2 in powers of x where chi() is a Ramanujan theta function and G() is a Rogers-Ramanujan function.
1, 2, 5, 8, 14, 22, 36, 54, 83, 120, 176, 250, 356, 494, 687, 936, 1276, 1714, 2298, 3046, 4030, 5280, 6902, 8952, 11580, 14882, 19077, 24314, 30910, 39104, 49344, 62000, 77712, 97032, 120872, 150058, 185869, 229520, 282814, 347504, 426118, 521182, 636204
Offset: 0
Keywords
Examples
G.f. = 1 + 2*x + 5*x^2 + 8*x^3 + 14*x^4 + 22*x^5 + 36*x^6 + 54*x^7 + ... G.f. = q^9 + 2*q^29 + 5*q^49 + 8*q^69 + 14*q^89 + 22*q^109 + 36*q^129 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2500
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ (QPochhammer[ x, x^2] QPochhammer[ x^2, -x^5] QPochhammer[ -x^3, -x^5])^-2, {x, 0, n}]; a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^-{2, 2, 0, 0, 2, 2, 0, 2, 2, 0, 2, 2, 0, 2, 2, 0, 0, 2, 2, 0}[[Mod[k, 20, 1]]], {k, n}], {x, 0, n}];
-
PARI
{a(n) = if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k + x * O(x^n))^-[ 0, 2, 2, 0, 0, 2, 2, 0, 2, 2, 0, 2, 2, 0, 2, 2, 0, 0, 2, 2][k%20 + 1]), n))};
-
PARI
{a(n) = if( n<0, 0, polcoeff( sum(k=0, (sqrtint(4*n + 1) - 1)\2, x^(k^2 + k)/ prod(i=1, 2*k+1, 1 - x^i, 1 + x * O(x^(n - k^2-k))))^2, n))};
Formula
Euler transform of period 20 sequence [ 2, 2, 0, 0, 2, 2, 0, 2, 2, 0, 2, 2, 0, 2, 2, 0, 0, 2, 2, 0, ...].
Expansion of (f(x, -x^4) / f(-x^2, -x^2))^2 = (f(x^2, x^8) / f(-x, -x^4))^2 in powers of x where f(, ) is Ramanujan's general theta function.
G.f.: (Sum_{k>=0} x^(k^2 + k) / ((1 - x) * (1 - x^2) * ... * (1 - x^(2*k+1))))^2.
a(n) = - A147699(5*n + 2).
Convolution square of A122135.
Comments