cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261575 Table of Fibonacci numbers in base-60 representation: row n contains the sexagesimal digits of A000045(n) in reversed order.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 29, 1, 24, 2, 53, 3, 17, 6, 10, 10, 27, 16, 37, 26, 4, 43, 41, 9, 1, 45, 52, 1, 26, 2, 3, 11, 55, 4, 37, 57, 7, 48, 52, 12, 25, 50, 20, 13, 43, 33, 38, 33, 54, 51, 16, 28, 1, 29, 50, 22, 2, 20, 7, 51, 3, 49, 57, 13, 6
Offset: 0

Views

Author

Reinhard Zumkeller, Sep 09 2015

Keywords

Comments

A261585(n) = length of n-th row;
T(n,0) = A261606(n) = in base 60: last sexagesimal digit of A000045(n);
T(n,A261607(n)-1) = A261607(n) = in base 60: initial sexagesimal digit of A000045(n);
A000045(n) = sum(T(n,k)*60^k : k = 0..A261585(n)-1).

Examples

			A000045(42) = 20*60^4 + 40*60^3 + 20*60^2 + 38*60^1 + 16*60^0 = 267914296.
. ----------------------------------------------------------------------
.   n | T(n,*)       n | T(n,*)             n | T(n,*)
. ----+---------   ----+---------------   ----+-------------------------
.   0 | [0]         21 | [26,2,3]          42 | [16,38,20,40,20]
.   1 | [1]         22 | [11,55,4]         43 | [17,7,55,26,33]
.   2 | [1]         23 | [37,57,7]         44 | [33,45,15,7,54]
.   3 | [2]         24 | [48,52,12]        45 | [50,52,10,34,27,1]
.   4 | [3]         25 | [25,50,20]        46 | [23,38,26,41,21,2]
.   5 | [5]         26 | [13,43,33]        47 | [13,31,37,15,49,3]
.   6 | [8]         27 | [38,33,54]        48 | [36,9,4,57,10,6]
.   7 | [13]        28 | [51,16,28,1]      49 | [49,40,41,12,0,10]
.   8 | [21]        29 | [29,50,22,2]      50 | [25,50,45,9,11,16]
.   9 | [34]        30 | [20,7,51,3]       51 | [14,31,27,22,11,26]
.  10 | [55]        31 | [49,57,13,6]      52 | [39,21,13,32,22,42]
.  11 | [29,1]      32 | [9,5,5,10]        53 | [53,52,40,54,33,8,1]
.  12 | [24,2]      33 | [58,2,19,16]      54 | [32,14,54,26,56,50,1]
.  13 | [53,3]      34 | [7,8,24,26]       55 | [25,7,35,21,30,59,2]
.  14 | [17,6]      35 | [5,11,43,42]      56 | [57,21,29,48,26,50,4]
.  15 | [10,10]     36 | [12,19,7,9,1]     57 | [22,29,4,10,57,49,7]
.  16 | [27,16]     37 | [17,30,50,51,1]   58 | [19,51,33,58,23,40,12]
.  17 | [37,26]     38 | [29,49,57,0,3]    59 | [41,20,38,8,21,30,20]
.  18 | [4,43]      39 | [46,19,48,52,4]   60 | [0,12,12,7,45,10,33]
.  19 | [41,9,1]    40 | [15,9,46,53,7]    61 | [41,32,50,15,6,41,53]
.  20 | [45,52,1]   41 | [1,29,34,46,12]   62 | [41,44,2,23,51,51,26,1]
		

Crossrefs

Cf. A000045, A261585 (row lengths), A261587 (row sums), A261598 (row products), A261606 (left edge), A261607 (right edge).

Programs

  • Haskell
    a261575 n k = a261575_tabf !! n !! k
    a261575_row n = a261575_tabf !! n
    a261575_tabf = [0] : [1] :
       zipWith (add 0) (tail a261575_tabf) a261575_tabf where
       add c (a:as) (b:bs) = y : add c' as bs where (c', y) = divMod (a+b+c) 60
       add c (a:as) [] = y : add c' as [] where (c', y) = divMod (a+c) 60
       add 1   = [1]
       add   _ = []
  • Mathematica
    Reverse[IntegerDigits[Fibonacci[Range[0, 50]], 60], 2] (* Paolo Xausa, Feb 19 2024 *)