A261575 Table of Fibonacci numbers in base-60 representation: row n contains the sexagesimal digits of A000045(n) in reversed order.
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 29, 1, 24, 2, 53, 3, 17, 6, 10, 10, 27, 16, 37, 26, 4, 43, 41, 9, 1, 45, 52, 1, 26, 2, 3, 11, 55, 4, 37, 57, 7, 48, 52, 12, 25, 50, 20, 13, 43, 33, 38, 33, 54, 51, 16, 28, 1, 29, 50, 22, 2, 20, 7, 51, 3, 49, 57, 13, 6
Offset: 0
Examples
A000045(42) = 20*60^4 + 40*60^3 + 20*60^2 + 38*60^1 + 16*60^0 = 267914296. . ---------------------------------------------------------------------- . n | T(n,*) n | T(n,*) n | T(n,*) . ----+--------- ----+--------------- ----+------------------------- . 0 | [0] 21 | [26,2,3] 42 | [16,38,20,40,20] . 1 | [1] 22 | [11,55,4] 43 | [17,7,55,26,33] . 2 | [1] 23 | [37,57,7] 44 | [33,45,15,7,54] . 3 | [2] 24 | [48,52,12] 45 | [50,52,10,34,27,1] . 4 | [3] 25 | [25,50,20] 46 | [23,38,26,41,21,2] . 5 | [5] 26 | [13,43,33] 47 | [13,31,37,15,49,3] . 6 | [8] 27 | [38,33,54] 48 | [36,9,4,57,10,6] . 7 | [13] 28 | [51,16,28,1] 49 | [49,40,41,12,0,10] . 8 | [21] 29 | [29,50,22,2] 50 | [25,50,45,9,11,16] . 9 | [34] 30 | [20,7,51,3] 51 | [14,31,27,22,11,26] . 10 | [55] 31 | [49,57,13,6] 52 | [39,21,13,32,22,42] . 11 | [29,1] 32 | [9,5,5,10] 53 | [53,52,40,54,33,8,1] . 12 | [24,2] 33 | [58,2,19,16] 54 | [32,14,54,26,56,50,1] . 13 | [53,3] 34 | [7,8,24,26] 55 | [25,7,35,21,30,59,2] . 14 | [17,6] 35 | [5,11,43,42] 56 | [57,21,29,48,26,50,4] . 15 | [10,10] 36 | [12,19,7,9,1] 57 | [22,29,4,10,57,49,7] . 16 | [27,16] 37 | [17,30,50,51,1] 58 | [19,51,33,58,23,40,12] . 17 | [37,26] 38 | [29,49,57,0,3] 59 | [41,20,38,8,21,30,20] . 18 | [4,43] 39 | [46,19,48,52,4] 60 | [0,12,12,7,45,10,33] . 19 | [41,9,1] 40 | [15,9,46,53,7] 61 | [41,32,50,15,6,41,53] . 20 | [45,52,1] 41 | [1,29,34,46,12] 62 | [41,44,2,23,51,51,26,1]
Links
- Reinhard Zumkeller, Rows n = 0..1000 of triangle, flattened
- Eric Weisstein's World of Mathematics, Sexagesimal
- Wikipedia, Sexagesimal
Crossrefs
Programs
-
Haskell
a261575 n k = a261575_tabf !! n !! k a261575_row n = a261575_tabf !! n a261575_tabf = [0] : [1] : zipWith (add 0) (tail a261575_tabf) a261575_tabf where add c (a:as) (b:bs) = y : add c' as bs where (c', y) = divMod (a+b+c) 60 add c (a:as) [] = y : add c' as [] where (c', y) = divMod (a+c) 60 add 1 = [1] add _ = []
-
Mathematica
Reverse[IntegerDigits[Fibonacci[Range[0, 50]], 60], 2] (* Paolo Xausa, Feb 19 2024 *)
Comments