A261580 Primes p such that A214028(p) is odd.
5, 13, 29, 37, 53, 61, 101, 109, 137, 149, 157, 173, 181, 197, 229, 269, 277, 293, 317, 349, 373, 389, 397, 421, 461, 509, 521, 541, 557, 569, 593, 613, 653, 661, 677, 701, 709, 733, 757, 773, 797, 821, 829, 853, 857, 877, 941, 953, 997, 1013, 1021, 1061, 1069
Offset: 1
Keywords
Examples
The smallest Pell number divisible by the prime 5 has index 3, which is odd, so 5 is in the sequence.
Links
- Jianing Song, Table of n, a(n) for n = 1..1280
- Bernadette Faye and Florian Luca, Pell Numbers whose Euler Function is a Pell Number, arXiv:1508.05714 [math.NT], 2015.
- Jianing Song, Lucas sequences and entry point modulo p
Crossrefs
Programs
-
Mathematica
f[n_] := Block[{k = 1}, While[Mod[Simplify[((1 + Sqrt@ 2)^k - (1 - Sqrt@ 2)^k)/(2 Sqrt@ 2)], n] != 0, k++]; k]; Select[Prime@ Range@ 180, OddQ@ f@ # &] (* Michael De Vlieger, Aug 25 2015 *)
-
PARI
pell(n) = polcoeff(Vec(x/(1-2*x-x^2) + O(x^(n+1))), n); z(n) = {k=1; while (pell(k) % n, k++); k;} lista(nn) = {forprime(p=2, nn, if (z(p) % 2, print1(p, ", ")););}
-
PARI
forprime(p=2, 1100, if(A214027(p)==4, print1(p, ", "))) \\ Jianing Song, Aug 13 2019
Comments