cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261580 Primes p such that A214028(p) is odd.

Original entry on oeis.org

5, 13, 29, 37, 53, 61, 101, 109, 137, 149, 157, 173, 181, 197, 229, 269, 277, 293, 317, 349, 373, 389, 397, 421, 461, 509, 521, 541, 557, 569, 593, 613, 653, 661, 677, 701, 709, 733, 757, 773, 797, 821, 829, 853, 857, 877, 941, 953, 997, 1013, 1021, 1061, 1069
Offset: 1

Views

Author

Michel Marcus, Aug 25 2015

Keywords

Comments

From Jianing Song, Aug 13 2019: (Start)
Primes p with 4 zeros in a fundamental period of A000129 mod p, that is, primes p such that A214027(p) = 4. For a proof of the equivalence between A214027(p) = 4 and A214028(p) being odd, see Section 2 of my link below.
For p > 2, p is in this sequence if and only if A175181(p) == 4 (mod 8).
This sequence contains all primes congruent to 5 modulo 8. This corresponds to case (1) for k = 6 in the Conclusion of Section 1 of my link below.
Conjecturely, since (k+2)/2 = 4 is a square, this sequence has density 7/24 in the primes; see the end of Section 1 of my link. (End) [Comment rewritten by Jianing Song, Jun 16 2024 and Jun 20 2024]
The conjecture above is an analog of Hasse's result that the set {p prime : ord(2,p) is odd} has density 7/24 in the primes, where ord(a,m) is the multiplicative order of a modulo m; see A014663. - Jianing Song, Jun 26 2025

Examples

			The smallest Pell number divisible by the prime 5 has index 3, which is odd, so 5 is in the sequence.
		

Crossrefs

Cf. also A175181.
Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
| m=1 | m=2 | m=3
-----------------------------+----------+----------+---------
The sequence {x(n)} | A000045 | A000129 | A006190
The sequence {w(k)} | A001176 | A214027 | A322906
Primes p such that w(p) = 1 | A112860* | A309580 | A309586
Primes p such that w(p) = 2 | A053027 | A309581 | A309587
Primes p such that w(p) = 4 | A053028 | this seq | A309588
Numbers k such that w(k) = 1 | A053031 | A309583 | A309591
Numbers k such that w(k) = 2 | A053030 | A309584 | A309592
Numbers k such that w(k) = 4 | A053029 | A309585 | A309593
* and also A053032 U {2}

Programs

  • Mathematica
    f[n_] := Block[{k = 1}, While[Mod[Simplify[((1 + Sqrt@ 2)^k - (1 - Sqrt@ 2)^k)/(2 Sqrt@ 2)], n] != 0, k++]; k]; Select[Prime@ Range@ 180, OddQ@ f@ # &] (* Michael De Vlieger, Aug 25 2015 *)
  • PARI
    pell(n) = polcoeff(Vec(x/(1-2*x-x^2) + O(x^(n+1))), n);
    z(n) = {k=1; while (pell(k) % n, k++); k;}
    lista(nn) = {forprime(p=2, nn, if (z(p) % 2, print1(p, ", ")););}
    
  • PARI
    forprime(p=2, 1100, if(A214027(p)==4, print1(p, ", "))) \\ Jianing Song, Aug 13 2019