A261581 Primes such that z(p) is not divisible by 4 where z(n) is A214028(n), the smallest k such that n divides A000129(k), the k-th Pell number.
2, 5, 7, 13, 23, 29, 31, 37, 41, 47, 53, 61, 71, 79, 101, 103, 109, 127, 137, 149, 151, 157, 167, 173, 181, 191, 197, 199, 223, 229, 239, 263, 269, 271, 277, 293, 311, 313, 317, 349, 353, 359, 367, 373, 383, 389, 397, 409, 421, 431, 439, 457, 461, 463, 479, 487
Offset: 1
Keywords
Examples
The smallest Pell number divisible by the prime 2 has index 2, which is not divisible by 4, so 2 is in the sequence.
Links
- Bernadette Faye and Florian Luca, Pell Numbers whose Euler Function is a Pell Number, arXiv:1508.05714 [math.NT], 2015.
Programs
-
PARI
pell(n) = polcoeff(Vec(x/(1-2*x-x^2) + O(x^(n+1))), n); z(n) = {k=1; while (pell(k) % n, k++); k;} lista(nn) = {forprime(p=2, nn, if (z(p) % 4, print1(p, ", ")););}