A261594 G.f.: sqrt( Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k) * 2^(k*(k-1)) ).
1, 1, 3, 37, 2149, 532611, 539508291, 2202251249193, 36044200375109487, 2361471528989758715269, 618991271516919971774301613, 649043297118583276751832395970903, 2722266074808493870871954767765560237289, 45671958833739479081570180837023756023304348531, 3064991675467024774224369897734145197065069681513495767
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 3*x^2 + 37*x^3 + 2149*x^4 + 532611*x^5 + 539508291*x^6 +... where A(x)^2 = 1 + 2*x + 7*x^2 + 80*x^3 + 4381*x^4 + 1069742*x^5 + 1080096067*x^6 +...+ A135756(n)*x^n +... such that A135756(n) = Sum_{k=0..n} binomial(n,k) * 2^(k*(k-1)). The residue of the terms modulo 3 begin: [1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, ...] where a(k) appears to be congruent to 1 (mod 3) at k = 9*A005836(n) + [0,1,3,4] for n>=0, and congruent to zeros elsewhere.
Crossrefs
Cf. A135756.
Programs
-
PARI
{a(n) = polcoeff( sum(m=0,n, x^m*sum(k=0, m, binomial(m, k)*2^(k*(k-1))) +x*O(x^n))^(1/2), n)} for(n=0,20,print1(a(n),", "))
Comments