cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261602 Triangular array of A(n,k) for n>=1 and 0<=k<=n^2 equal the number of permutations of the set {1,2,...,n}^2 such that first coordinates of first k elements are nondecreasing and second coordinates of the remaining n^2-k elements are nondecreasing.

Original entry on oeis.org

1, 1, 4, 8, 10, 8, 4, 216, 648, 1188, 1668, 1944, 1944, 1668, 1188, 648, 216, 331776, 1327104, 3151872, 5695488, 8608896, 11446272, 13791744, 15326208, 15858432, 15326208, 13791744, 11446272, 8608896, 5695488, 3151872, 1327104, 331776, 24883200000, 124416000000, 360806400000, 787138560000, 1426595328000, 2262299258880, 3240594432000, 4283587584000, 5304730521600, 6222411878400, 6968709089280, 7493189990400, 7763310604800
Offset: 1

Views

Author

Max Alekseyev, Aug 25 2015

Keywords

Comments

A(n,k) = A(n,n^2-k)
It is conjectured that A(n,k)>A(n,k-1) for k<=floor(n^2/2) (see Mathoverflow link).

Examples

			The array starts with
n=1: 1, 1
n=2: 4, 8, 10, 8, 4
n=3: 216, 648, 1188, 1668, 1944, 1944, 1668, 1188, 648, 216
...
		

Crossrefs

Cf. A036740 (A(n,0)), A261603 (A(n,[n^2/2])).

Programs

  • PARI
    { A(n,k) = my(r,rw,rs,s,t,p); r=vector(n^2+1); rw=[]; forvec(v=vector(n,i,[0,1]),rw=concat(rw,[v])); rs=vector(#rw,i,sum(j=1,n,rw[i][j])); forvec(v=vector(n,i,[1,#rw]), s=sum(j=1,#v,rs[v[j]]); t=n!; p=1; for(i=2,#v,if(v[i]==v[i-1],p++,t/=p!;p=1)); t/=p!; r[s+1]+=t*prod(i=1,n,rs[v[i]]!)*prod(j=1,n,(n-sum(i=1,n,rw[v[i]][j]))!); ,1); r[k] }

Formula

A(n,k) = SUM rs(M,1)!*...*rs(M,n)*(n-cs(M,1))!*...*(n-cs(M,n))!, where the sum is taken over n X n (0,1)-matrices with exactly k ones, rs(M,i) and cs(M,j) are the i-th row sum and the j-th column sum of M, respectively.