A261640 Numbers n such that the digital sum of n is the same as the digital sum of n^2 in both base 2 and base 10.
0, 1, 351, 379, 496, 558, 639, 1495, 1792, 3259, 4600, 5950, 6399, 6588, 8568, 10494, 10495, 12799, 17380, 17919, 26479, 38872, 38880, 44991, 44992, 46585, 48888, 56952, 59247, 60895, 64639, 89839, 89848, 89856, 92799, 105390, 142848, 168895, 174078, 179596
Offset: 1
Examples
Consider the number n = 351 so n^2 = 123201. The base-10 digit sums of 351 and 123201 are both 9. Moreover, 351 has binary representation 101011111 and 123201 has binary representation 11110000101000001 and both have base-2 digit sum = 7. Thus 351 is a term in the sequence.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range[0,180000],Total[IntegerDigits[#]]==Total[IntegerDigits[#^2]]&&Total[ IntegerDigits[ #,2]]==Total[IntegerDigits[#^2,2]]&] (* Harvey P. Dale, May 29 2023 *)
-
Sage
[n for n in [0..200000] if sum((n).digits(2))==sum((n^2).digits(2)) and sum((n).digits())==sum((n^2).digits())]
Extensions
Name (definition) and Example edited by Harvey P. Dale, May 29 2023
Comments