A261654 Lead almost-Pythagorean triples generated by primitive Pythagorean triples of the form (2i-1, 2i^2-2i, 2i^2-2i+1), i >= 2.
4, 7, 8, 6, 17, 18, 8, 31, 32, 10, 49, 50, 12, 71, 72, 14, 97, 98, 16, 127, 128, 18, 161, 162, 20, 199, 200, 22, 241, 242, 24, 287, 288, 26, 337, 338, 28, 391, 392, 30, 449, 450, 32, 511, 512, 34, 577, 578
Offset: 1
Examples
When k=1 and i=2 the formula for (x,y,z) gives the Lead APT (4,7,8). First rows are: 4, 7, 8; 6, 17, 18; 8, 31, 32; 10, 49, 50; 12, 71, 72; 14, 97, 98; ...
Links
- John Rafael M. Antalan, Mark D. Tomenes, A Note on Generating Almost Pythagorean Triples, arXiv:1508.07562 [math.NT], 2015.
- O. Frink, Almost Pythagorean Triples, Mathematics Magazine, Vol.60, No.4, (1987), pp.234-236.
Programs
-
Mathematica
xyz[i_] := {2i, 2i^2-1, 2i^2}; Array[xyz, 16, 2] // Flatten (* Jean-François Alcover, Feb 02 2019 *)
-
PARI
tabf(nn) = for (i=2, nn, print(2*i, ", ", 2*i^2-1, ", ", 2*i^2)); \\ Michel Marcus, Aug 31 2015
Formula
(x,y,z) = [(2i-1)k+1,(2i^2-2i)k+(2i-1),(2i^2-2i+1)k+(2i-1)], with i>=2 and k=1.
Comments