cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261655 Squares equal to the difference between two successive primes of the form k^2+2 in the order in which they appear in A056899.

Original entry on oeis.org

1, 144, 1296, 3600, 176400, 156816, 2985984, 921600, 2702736, 11696400, 18974736, 21566736, 17740944, 5992704, 125888400, 7290000, 8363664, 12027024, 63680400, 210830400, 13838400, 72590400, 15116544, 15397776, 67568400, 128595600, 80784144, 93315600, 33039504
Offset: 1

Views

Author

Michel Lagneau, Aug 28 2015

Keywords

Comments

Note that all terms after the first are divisible by 144: for n>1 the sequence b(n) = sqrt(a(n)/144) is 1, 3, 5, 35, 33, 144, 80, 137, 285, 363, 387, 351, 204, 935, 225, 241, 289, ..., see A261659.
The proof that all terms are == 0 (mod 144) is simple once you realize that the primes == 11 (mod 72), see comment in A056899. - Robert G. Wilson v, Sep 03 2015

Examples

			A056899(2)- A056899(1) = 3-2 = 1^2;
A056899(5)- A056899(4) = 227-83 = 144 = 12^2;
A056899(14)- A056899(13) = 12323-11027 = 1296 = 36^2.
		

Crossrefs

Programs

  • Maple
    q:=2:for n from 1 to 10^7 do:p:=n^2+2:if isprime(p) then x:=p-q:q:=p: z:=sqrt(x):if z=floor(z) then printf(`%d, `, x):else fi:fi:od:
  • Mathematica
    Select[ Differences[ Select[ Range[0, 1000000], PrimeQ[#^2 + 2] &]^2], IntegerQ@ Sqrt@# &] (* or *)
    k = 1; p = 3; lst = {1}; While[k < 10000001, q = (6k +3)^2 + 2; If[ PrimeQ@ q, If[ IntegerQ@ Sqrt[q - p], AppendTo[lst, q - p]]; p = q]; k++] (* Robert G. Wilson v, Sep 03 2015 *)