A256534 Number of ON cells at n-th stage in simple 2-dimensional cellular automaton (see Comments lines for definition).
0, 4, 16, 28, 64, 76, 112, 172, 256, 268, 304, 364, 448, 556, 688, 844, 1024, 1036, 1072, 1132, 1216, 1324, 1456, 1612, 1792, 1996, 2224, 2476, 2752, 3052, 3376, 3724, 4096, 4108, 4144, 4204, 4288, 4396, 4528, 4684, 4864, 5068, 5296, 5548, 5824, 6124, 6448, 6796, 7168, 7564, 7984, 8428, 8896, 9388, 9904, 10444, 11008
Offset: 0
Examples
With the positive terms written as an irregular triangle in which the row lengths are the terms of A011782 the sequence begins: 4; 16; 28, 64; 76, 112, 172, 256; 268, 304, 364, 448, 556, 688, 844, 1024; ... Right border gives the elements of A000302 greater than 1. This triangle T(n,k) shares with the triangle A160410 the terms of the column k, if k is a power of 2, for example, both triangles share the following terms: 4, 16, 28, 64, 76, 112, 256, 268, 304, 448, 1024, etc. . Illustration of initial terms, for n = 1..10: . _ _ _ _ _ _ _ _ . | _ _ | | _ _ | . | | _|_|_ _ _ _ _ _ _ _ _ _ _ _|_|_ | | . | |_| _ _ _ _ _ _ _ _ _ _ _ _ |_| | . |_ _| | _ _ _ _ | | _ _ _ _ | |_ _| . | | | _ _ | | | | _ _ | | | . | | | | _|_|_|_ _|_|_|_ | | | | . | | | |_| _ _ _ _ |_| | | | . | | |_ _| | _|_ _|_ | |_ _| | | . | |_ _ _| |_| _ _ |_| |_ _ _| | . | | | | | | | | . | _ _ _| _| |_ _| |_ |_ _ _ | . | | _ _| | |_ _ _ _| | |_ _ | | . | | | _| |_ _| |_ _| |_ | | | . | | | | |_ _ _ _ _ _ _ _| | | | | . | | | |_ _| | | | | |_ _| | | | . _ _| | |_ _ _ _| | | |_ _ _ _| | |_ _ . | _| |_ _ _ _ _ _| |_ _ _ _ _ _| |_ | . | | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | | . | |_ _| | | |_ _| | . |_ _ _ _| |_ _ _ _| . After 10 generations there are 304 ON cells, so a(10) = 304.
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..16384
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 37.
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
- Index entries for sequences related to cellular automata
Programs
-
Mathematica
{0}~Join~Flatten@ Table[4^i + 3 (2 j)^2, {i, 6}, {j, 0, 2^(i - 1) - 1}] (* Michael De Vlieger, Nov 03 2022 *)
Formula
For i = 1 to z: for j = 0 to 2^(i-1)-1: n = n+1: a(n) = 4^i + 3*(2*j)^2: next j: next i
It appears that a(n) = 4 * A236305(n-1), n >= 1.
Comments