A261699
Triangle read by rows: T(n,k), n >= 1, k >= 1, in which column k lists positive terms interleaved with k-1 zeros, starting in row k(k+1)/2. If k is odd the positive terms of column k are k's, otherwise if k is even the positive terms of column k are the odd numbers greater than k in increasing order.
Original entry on oeis.org
1, 1, 1, 3, 1, 0, 1, 5, 1, 0, 3, 1, 7, 0, 1, 0, 0, 1, 9, 3, 1, 0, 0, 5, 1, 11, 0, 0, 1, 0, 3, 0, 1, 13, 0, 0, 1, 0, 0, 7, 1, 15, 3, 0, 5, 1, 0, 0, 0, 0, 1, 17, 0, 0, 0, 1, 0, 3, 9, 0, 1, 19, 0, 0, 0, 1, 0, 0, 0, 5, 1, 21, 3, 0, 0, 7, 1, 0, 0, 11, 0, 0, 1, 23, 0, 0, 0, 0, 1, 0, 3, 0, 0, 0, 1, 25, 0, 0, 5, 0, 1, 0, 0, 13, 0, 0
Offset: 1
Triangle begins:
1;
1;
1, 3;
1, 0;
1, 5;
1, 0, 3;
1, 7, 0;
1, 0, 0;
1, 9, 3;
1, 0, 0, 5;
1, 11, 0, 0;
1, 0, 3, 0;
1, 13, 0, 0;
1, 0, 0, 7;
1, 15, 3, 0, 5;
1, 0, 0, 0, 0;
1, 17, 0, 0, 0;
1, 0, 3, 9, 0;
1, 19, 0, 0, 0;
1, 0, 0, 0, 5;
1, 21, 3, 0, 0, 7;
1, 0, 0, 11, 0, 0;
1, 23, 0, 0, 0, 0;
1, 0, 3, 0, 0, 0;
1, 25, 0, 0, 5, 0;
1, 0, 0, 13, 0, 0;
1, 27, 3, 0, 0, 9;
1, 0, 0, 0, 0, 0, 7;
...
From _Omar E. Pol_, Dec 19 2016: (Start)
Illustration of initial terms in a right triangle whose structure is the same as the structure of A237591:
Row _
1 _|1|
2 _|1 _|
3 _|1 |3|
4 _|1 _|0|
5 _|1 |5 _|
6 _|1 _|0|3|
7 _|1 |7 |0|
8 _|1 _|0 _|0|
9 _|1 |9 |3 _|
10 _|1 _|0 |0|5|
11 _|1 |11 _|0|0|
12 _|1 _|0 |3 |0|
13 _|1 |13 |0 _|0|
14 _|1 _|0 _|0|7 _|
15 _|1 |15 |3 |0|5|
16 _|1 _|0 |0 |0|0|
17 _|1 |17 _|0 _|0|0|
18 _|1 _|0 |3 |9 |0|
19 _|1 |19 |0 |0 _|0|
20 _|1 _|0 _|0 |0|5 _|
21 _|1 |21 |3 _|0|0|7|
22 _|1 _|0 |0 |11 |0|0|
23 _|1 |23 _|0 |0 |0|0|
24 _|1 _|0 |3 |0 _|0|0|
25 _|1 |25 |0 _|0|5 |0|
26 _|1 _|0 _|0 |13 |0 _|0|
27 _|1 |27 |3 |0 |0|9 _|
28 |1 |0 |0 |0 |0|0|7|
... (End)
Cf.
A000217,
A000593,
A001227,
A003056,
A005408,
A027750,
A057427,
A182469,
A196020,
A211343,
A236104,
A235791,
A236112,
A237048,
A237591,
A237593,
A261350,
A261697,
A261698,
A285914,
A286013.
-
T[n_, k_?OddQ] /; n == k (k + 1)/2 := k; T[n_, k_?OddQ] /; Mod[n - k (k + 1)/2, k] == 0 := k; T[n_, k_?EvenQ] /; n == k (k + 1)/2 := k + 1; T[n_, k_?EvenQ] /; Mod[n - k (k + 1)/2, k] == 0 := T[n - k, k] + 2; T[, ] = 0; Table[T[n, k], {n, 1, 26}, {k, 1, Floor[(Sqrt[1 + 8 n] - 1)/2]}] // Flatten (* Jean-François Alcover, Sep 21 2015 *)
(* alternate definition using function a237048 *)
T[n_, k_] := If[a237048[n, k] == 1, If[OddQ[k], k, 2n/k], 0] (* Hartmut F. W. Hoft, Oct 25 2015 *)
A266531
Square array read by antidiagonals upwards: T(n,k) = n-th number with k odd divisors.
Original entry on oeis.org
1, 2, 3, 4, 5, 9, 8, 6, 18, 15, 16, 7, 25, 21, 81, 32, 10, 36, 27, 162, 45, 64, 11, 49, 30, 324, 63, 729, 128, 12, 50, 33, 625, 75, 1458, 105, 256, 13, 72, 35, 648, 90, 2916, 135, 225, 512, 14, 98, 39, 1250, 99, 5832, 165, 441, 405, 1024, 17, 100, 42, 1296, 117, 11664, 189, 450, 567, 59049, 2048, 19, 121, 51, 2401, 126, 15625
Offset: 1
The corner of the square array begins:
1, 3, 9, 15, 81, 45, 729, 105, 225, 405, ...
2, 5, 18, 21, 162, 63, 1458, 135, 441, 567, ...
4, 6, 25, 27, 324, 75, 2916, 165, 450, 810, ...
8, 7, 36, 30, 625, 90, 5832, 189, 882, 891, ...
16, 10, 49, 33, 648, 99, 11664, 195, 900, 1053, ...
32, 11, 50, 35, 1250, 117, 15625, 210, 1089, 1134, ...
64, 12, 72, 39, 1296, 126, 23328, 231, 1225, 1377, ...
128, 13, 98, 42, 2401, 147, 31250, 255, 1521, 1539, ...
...
Cf.
A001227,
A182469,
A236104,
A237591,
A237593,
A240062,
A261697,
A261698,
A261699,
A279387,
A286000,
A286001,
A296508.
A261697
Irregular triangle read by rows in which row n lists the odd divisors of n in the ordering given by A261699.
Original entry on oeis.org
1, 1, 1, 3, 1, 1, 5, 1, 3, 1, 7, 1, 1, 9, 3, 1, 5, 1, 11, 1, 3, 1, 13, 1, 7, 1, 15, 3, 5, 1, 1, 17, 1, 3, 9, 1, 19, 1, 5, 1, 21, 3, 7, 1, 11, 1, 23, 1, 3, 1, 25, 5, 1, 13, 1, 27, 3, 9, 1, 7, 1, 29, 1, 3, 15, 5, 1, 31, 1, 1, 33, 3, 11, 1, 17, 1, 35, 5, 7, 1, 3, 9, 1, 37, 1, 19, 1, 39, 3, 13, 1, 5, 1, 41, 1, 3, 21, 7, 1, 43, 1, 11, 1, 45, 3, 5, 15, 9
Offset: 1
List of divisors of 45 from distinct sequences:
45th row of triangle A182469: 1, 3, 5, 9, 15, 45.
45th row of triangle A261698: 1, 45, 3, 15, 5, 9.
45th row of this triangle...: 1, 45, 3, 5, 15, 9.
Triangle begins:
1;
1;
1, 3;
1;
1, 5;
1, 3;
1, 7;
1;
1, 9, 3;
1, 5;
1, 11;
1, 3;
1, 13;
1, 7;
1, 15, 3, 5;
1;
1, 17;
1, 3, 9;
1, 19;
1, 5;
1, 21, 3, 7;
...
A379634
Irregular triangle read by rows in which row n lists the odd divisors of n ordered as the mirror of A261697.
Original entry on oeis.org
1, 1, 3, 1, 1, 5, 1, 3, 1, 7, 1, 1, 3, 9, 1, 5, 1, 11, 1, 3, 1, 13, 1, 7, 1, 5, 3, 15, 1, 1, 17, 1, 9, 3, 1, 19, 1, 5, 1, 7, 3, 21, 1, 11, 1, 23, 1, 3, 1, 5, 25, 1, 13, 1, 9, 3, 27, 1, 7, 1, 29, 1, 5, 15, 3, 1, 31, 1, 1, 11, 3, 33, 1, 17, 1, 7, 5, 35, 1, 9, 3, 1, 37, 1, 19, 1, 13, 3, 39, 1, 5, 1, 41, 1, 7, 21, 3, 1, 43, 1, 11, 1
Offset: 1
Triangle begins:
1;
1;
3, 1;
1;
5, 1;
3, 1;
7, 1;
1;
3, 9, 1;
5, 1;
11, 1;
3, 1;
13, 1;
7, 1;
5, 3, 15, 1;
1;
17, 1;
9, 3, 1;
19, 1;
5, 1;
7, 3, 21, 1;
11, 1;
23, 1;
3, 1;
5, 25, 1;
13, 1;
9, 3, 27, 1;
7, 1;
...
Illustration of initial terms:
Row _
1 |1|_
2 |_ 1|_
3 |3| 1|_
4 | |_ 1|_
5 |_ 5| 1|_
6 |3| |_ 1|_
7 | | 7| 1|_
8 | |_ |_ 1|_
9 |_ 3| 9| 1|_
10 |5| | |_ 1|_
11 | | |_ 11| 1|_
12 | | 3| |_ 1|_
13 | |_ | 13| 1|_
14 |_ 7| |_ |_ 1|_
15 |5| | 3| 15| 1|_
16 | | | | |_ 1|_
17 | | |_ |_ 17| 1|_
18 | | 9| 3| |_ 1|_
19 | |_ | | 19| 1|_
20 |_ 5| | |_ |_ 1|_
21 |7| | |_ 3| 21| 1|_
22 | | | 11| | |_ 1|_
23 | | | | |_ 23| 1|_
24 | | |_ | 3| |_ 1|_
25 | | 5| |_ | 25| 1|_
26 | |_ | 13| |_ |_ 1|_
27 |_ 9| | | 3| 27| 1|_
28 |7| | | | | | 1|
...
The diagram is also the right part of the diagram of A379630 and of A379631.
The geometrical structure is the same as the diagram of A261350 which is the mirror of A237591.
Cf.
A196020,
A235791,
A236104,
A237048,
A237591,
A237593,
A261350,
A261699,
A379630,
A379631,
A379632,
A379633.
Showing 1-4 of 4 results.
Comments