A261699 Triangle read by rows: T(n,k), n >= 1, k >= 1, in which column k lists positive terms interleaved with k-1 zeros, starting in row k(k+1)/2. If k is odd the positive terms of column k are k's, otherwise if k is even the positive terms of column k are the odd numbers greater than k in increasing order.
1, 1, 1, 3, 1, 0, 1, 5, 1, 0, 3, 1, 7, 0, 1, 0, 0, 1, 9, 3, 1, 0, 0, 5, 1, 11, 0, 0, 1, 0, 3, 0, 1, 13, 0, 0, 1, 0, 0, 7, 1, 15, 3, 0, 5, 1, 0, 0, 0, 0, 1, 17, 0, 0, 0, 1, 0, 3, 9, 0, 1, 19, 0, 0, 0, 1, 0, 0, 0, 5, 1, 21, 3, 0, 0, 7, 1, 0, 0, 11, 0, 0, 1, 23, 0, 0, 0, 0, 1, 0, 3, 0, 0, 0, 1, 25, 0, 0, 5, 0, 1, 0, 0, 13, 0, 0
Offset: 1
Examples
Triangle begins: 1; 1; 1, 3; 1, 0; 1, 5; 1, 0, 3; 1, 7, 0; 1, 0, 0; 1, 9, 3; 1, 0, 0, 5; 1, 11, 0, 0; 1, 0, 3, 0; 1, 13, 0, 0; 1, 0, 0, 7; 1, 15, 3, 0, 5; 1, 0, 0, 0, 0; 1, 17, 0, 0, 0; 1, 0, 3, 9, 0; 1, 19, 0, 0, 0; 1, 0, 0, 0, 5; 1, 21, 3, 0, 0, 7; 1, 0, 0, 11, 0, 0; 1, 23, 0, 0, 0, 0; 1, 0, 3, 0, 0, 0; 1, 25, 0, 0, 5, 0; 1, 0, 0, 13, 0, 0; 1, 27, 3, 0, 0, 9; 1, 0, 0, 0, 0, 0, 7; ... From _Omar E. Pol_, Dec 19 2016: (Start) Illustration of initial terms in a right triangle whose structure is the same as the structure of A237591: Row _ 1 _|1| 2 _|1 _| 3 _|1 |3| 4 _|1 _|0| 5 _|1 |5 _| 6 _|1 _|0|3| 7 _|1 |7 |0| 8 _|1 _|0 _|0| 9 _|1 |9 |3 _| 10 _|1 _|0 |0|5| 11 _|1 |11 _|0|0| 12 _|1 _|0 |3 |0| 13 _|1 |13 |0 _|0| 14 _|1 _|0 _|0|7 _| 15 _|1 |15 |3 |0|5| 16 _|1 _|0 |0 |0|0| 17 _|1 |17 _|0 _|0|0| 18 _|1 _|0 |3 |9 |0| 19 _|1 |19 |0 |0 _|0| 20 _|1 _|0 _|0 |0|5 _| 21 _|1 |21 |3 _|0|0|7| 22 _|1 _|0 |0 |11 |0|0| 23 _|1 |23 _|0 |0 |0|0| 24 _|1 _|0 |3 |0 _|0|0| 25 _|1 |25 |0 _|0|5 |0| 26 _|1 _|0 _|0 |13 |0 _|0| 27 _|1 |27 |3 |0 |0|9 _| 28 |1 |0 |0 |0 |0|0|7| ... (End)
Crossrefs
Programs
-
Mathematica
T[n_, k_?OddQ] /; n == k (k + 1)/2 := k; T[n_, k_?OddQ] /; Mod[n - k (k + 1)/2, k] == 0 := k; T[n_, k_?EvenQ] /; n == k (k + 1)/2 := k + 1; T[n_, k_?EvenQ] /; Mod[n - k (k + 1)/2, k] == 0 := T[n - k, k] + 2; T[, ] = 0; Table[T[n, k], {n, 1, 26}, {k, 1, Floor[(Sqrt[1 + 8 n] - 1)/2]}] // Flatten (* Jean-François Alcover, Sep 21 2015 *) (* alternate definition using function a237048 *) T[n_, k_] := If[a237048[n, k] == 1, If[OddQ[k], k, 2n/k], 0] (* Hartmut F. W. Hoft, Oct 25 2015 *)
Formula
From Hartmut F. W. Hoft, Oct 25 2015: (Start)
T(n, k) = 2n/k, if A237048(n, k) = 1 and k even,
and in accordance with the definition:
T(n, k) = k, if A237048(n, k) = 1 and k odd,
T(n, k) = 0 otherwise; for k <= A003056(n).
(End)
For m >= 1, d >= 1 and odd, T(m*d, m + d/2 - abs(m - d/2)) = d. - Peter Munn, Jul 24 2017
Comments