A261733 Expansion of Product_{k>=1} (1 + x^(9*k))/(1 + x^k).
1, -1, 0, -1, 1, -1, 1, -1, 2, -1, 1, -2, 2, -2, 2, -3, 4, -3, 4, -5, 5, -6, 6, -7, 8, -8, 9, -9, 10, -12, 11, -13, 15, -16, 17, -18, 22, -23, 23, -27, 30, -31, 32, -35, 40, -40, 42, -48, 51, -54, 57, -63, 69, -71, 78, -85, 90, -97, 102, -110, 118, -124, 133
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Maple
with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add(d*[0, -1, 0, -1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, -1, 0, -1] [1+irem(d, 18)], d=divisors(j))*a(n-j), j=1..n)/n) end: seq(a(n), n=0..80); # Alois P. Heinz, Sep 01 2015
-
Mathematica
nmax = 100; CoefficientList[Series[Product[(1 + x^(9*k))/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x]
Formula
a(n) ~ (-1)^n * exp(2*Pi*sqrt(n/3)/3) / (2 * 3^(3/4) * n^(3/4)).
Comments