cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A261718 Number A(n,k) of partitions of n where each part i is marked with a word of length i over a k-ary alphabet whose letters appear in alphabetical order; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 7, 3, 0, 1, 4, 15, 18, 5, 0, 1, 5, 26, 55, 50, 7, 0, 1, 6, 40, 124, 216, 118, 11, 0, 1, 7, 57, 235, 631, 729, 301, 15, 0, 1, 8, 77, 398, 1470, 2780, 2621, 684, 22, 0, 1, 9, 100, 623, 2955, 8001, 12954, 8535, 1621, 30, 0
Offset: 0

Views

Author

Alois P. Heinz, Aug 29 2015

Keywords

Examples

			A(3,2) = 18: 3aaa, 3aab, 3abb, 3bbb, 2aa1a, 2aa1b, 2ab1a, 2ab1b, 2bb1a, 2bb1b, 1a1a1a, 1a1a1b, 1a1b1a, 1a1b1b, 1b1a1a, 1b1a1b, 1b1b1a, 1b1b1b.
Square array A(n,k) begins:
  1,  1,   1,    1,     1,      1,      1,       1, ...
  0,  1,   2,    3,     4,      5,      6,       7, ...
  0,  2,   7,   15,    26,     40,     57,      77, ...
  0,  3,  18,   55,   124,    235,    398,     623, ...
  0,  5,  50,  216,   631,   1470,   2955,    5355, ...
  0,  7, 118,  729,  2780,   8001,  19158,   40299, ...
  0, 11, 301, 2621, 12954,  45865, 130453,  317905, ...
  0, 15, 684, 8535, 55196, 241870, 820554, 2323483, ...
		

Crossrefs

Rows n=0-2 give: A000012, A001477, A005449.
Main diagonal gives A209668.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1, k)+`if`(i>n, 0, b(n-i, i, k)*binomial(i+k-1, k-1))))
        end:
    A:= (n, k)-> b(n, n, k):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + If[i > n, 0, b[n - i, i, k]*Binomial[i + k - 1, k - 1]]]]; A[n_, k_] := b[n, n, k]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Feb 22 2016, after Alois P. Heinz *)

Formula

A(n,k) = Sum_{i=0..k} C(k,i) * A261719(n,k-i).

A293367 Number of partitions of n where each part i is marked with a word of length i over a ternary alphabet whose letters appear in alphabetical order and all three letters occur at least once in the partition.

Original entry on oeis.org

10, 81, 396, 1751, 6528, 23892, 80979, 272085, 876342, 2821217, 8840964, 27713589, 85532512, 263935014, 806417553, 2464692788, 7483544643, 22727335830, 68734242687, 207887123472, 627024671262, 1891376241178, 5694616254570, 17146333061406, 51564199968339
Offset: 3

Views

Author

Alois P. Heinz, Oct 07 2017

Keywords

Crossrefs

Column k=3 of A261719.
Cf. A261737.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1, k)+`if`(i>n, 0, b(n-i, i, k)*binomial(i+k-1, k-1))))
        end:
    a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k))(3):
    seq(a(n), n=3..30);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + If[i > n, 0, b[n - i, i, k] Binomial[i + k - 1, k - 1]]]];
    a[n_] := With[{k = 3}, Sum[b[n, n, k - i] (-1)^i Binomial[k, i], {i, 0, k}]];
    a /@ Range[3, 30] (* Jean-François Alcover, Dec 08 2020, after Alois P. Heinz *)

Formula

a(n) ~ c * 3^n, where c = 6.846206073498521357898163368676070142316815386135993166380819930419737... - Vaclav Kotesovec, Oct 11 2017
Showing 1-2 of 2 results.