cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261767 Triangle read by rows: T(n,k) is the number of subpermutations of an n-set, whose orbits are each of size at most k with at least one orbit of size exactly k.

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 1, 7, 18, 8, 1, 15, 99, 64, 30, 1, 31, 510, 560, 300, 144, 1, 63, 2745, 4800, 3150, 1728, 840
Offset: 0

Views

Author

Samira Stitou, Sep 21 2015

Keywords

Examples

			T(3, 2) = 18 because there are 18 subpermutations on {1,2,3} whose orbits are each of size at most 2 with at least one orbit of size exactly 2, namely: (1 2 --> 2 1), (1 3 --> 3 1), (2 3 --> 3 2), (123 --> 213), (123 --> 321), (123 --> 132); (1-->2), (1-->3), (2-->1), (2-->3), (3-->1), (3-->2); (13-->23), (12-->32), (23-->13), (32-->33), (23-->21), (13-->12).
Triangle starts:
1;
1, 1;
1, 3, 3;
1, 7, 18, 8;
1, 15, 99, 64, 30;
1, 31, 510, 560, 300, 144;
...
		

References

  • A. Laradji and A. Umar, On the number of subpermutations with fixed orbit size, Ars Combinatoria, 109 (2013), 447-460.

Crossrefs

Formula

T(n, k) = A261763(n, k) - A261763(n, k-1), T(n, n) = A261766(n) for all n not equal to 1 and T(1, 1) = 1.