A261762 Triangle read by rows: T(n,k) is the number of subpermutations of an n-set whose orbits are each of size at most k, and without fixed points. Equivalently, T(n,k) is the number of partial derangements of an n-set each of whose orbits is of size at most k.
1, 1, 1, 1, 1, 4, 1, 1, 10, 18, 1, 1, 46, 78, 108, 1, 1, 166, 486, 636, 780, 1, 1, 856, 3096, 4896, 5760, 6600, 1, 1, 3844, 21204, 40104, 52200, 58080, 63840, 1, 1, 21820, 167868, 363168, 508320, 602400, 648480, 693840, 1, 1, 114076, 1370268, 3490848, 5450400, 6720480
Offset: 0
Examples
T(3,2) = 10 because there are 10 subpermutations on {1,2,3}, each of whose orbit is of size at most 2, and without fixed points, namely: Empty map, (1,2) --> (2,1), (1,3) --> (3,1) (2,3) --> (3,2), 1-->2, 1-->3, 2-->1, 2-->3, 3-->1, 3-->2. Triangle starts: 1; 1, 1; 1, 1, 4; 1, 1, 10, 18; 1, 1, 46, 78, 108; 1, 1, 166, 486, 636, 780; ...
Links
- A. Laradji and A. Umar, On the number of subpermutations with fixed orbit size, Ars Combinatoria, 109 (2013), 447-460.
Programs
-
Maple
A261762 := proc(n,k) if k = 0 then 1; else if k < 1 then g := 1; elif k < 2 then g := exp(x) ; else g := exp(x+add((j+1)*x^j/j,j=2..k)) ; fi; coeftayl(g,x=0,n) *n! ; end if; end proc: seq(seq( A261762(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Nov 04 2015
-
Mathematica
T[n_, k_] := SeriesCoefficient[ Exp[ x + Sum[ (j+1)*x^j/j, {j, 2, k}]], {x, 0, n}] * n!; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 13 2017 *)
Formula
T(n,k) = T(n-1,k) + 3(n-1)T(n-2,k) + ... +(k+1)(n-1)(n-2)...(n-k+1)T(n-k,k) if k<=n.
T(n,k) = T(n,n) if k>n, not part of the triangle.
T(n,0) = T(n,1) = 1.
T(n,n) = A144085(n). (Diagonal)
G.f.: exp(x+(3x^2)/2+ ... +((k+1)x^k)/k).
Extensions
More terms from Alois P. Heinz, Oct 07 2015
Comments