A261762
Triangle read by rows: T(n,k) is the number of subpermutations of an n-set whose orbits are each of size at most k, and without fixed points. Equivalently, T(n,k) is the number of partial derangements of an n-set each of whose orbits is of size at most k.
Original entry on oeis.org
1, 1, 1, 1, 1, 4, 1, 1, 10, 18, 1, 1, 46, 78, 108, 1, 1, 166, 486, 636, 780, 1, 1, 856, 3096, 4896, 5760, 6600, 1, 1, 3844, 21204, 40104, 52200, 58080, 63840, 1, 1, 21820, 167868, 363168, 508320, 602400, 648480, 693840, 1, 1, 114076, 1370268, 3490848, 5450400, 6720480
Offset: 0
T(3,2) = 10 because there are 10 subpermutations on {1,2,3}, each of whose orbit is of size at most 2, and without fixed points, namely: Empty map, (1,2) --> (2,1), (1,3) --> (3,1) (2,3) --> (3,2), 1-->2, 1-->3, 2-->1, 2-->3, 3-->1, 3-->2.
Triangle starts:
1;
1, 1;
1, 1, 4;
1, 1, 10, 18;
1, 1, 46, 78, 108;
1, 1, 166, 486, 636, 780;
...
-
A261762 := proc(n,k)
if k = 0 then
1;
else
if k < 1 then
g := 1;
elif k < 2 then
g := exp(x) ;
else
g := exp(x+add((j+1)*x^j/j,j=2..k)) ;
fi;
coeftayl(g,x=0,n) *n! ;
end if;
end proc:
seq(seq( A261762(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Nov 04 2015
-
T[n_, k_] := SeriesCoefficient[ Exp[ x + Sum[ (j+1)*x^j/j, {j, 2, k}]], {x, 0, n}] * n!; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 13 2017 *)
A261764
Triangle read by rows: T(n,k) is the number of nilpotent subpermutations on an n-set, each of nilpotency index less than or equal to k.
Original entry on oeis.org
1, 0, 1, 0, 1, 3, 0, 1, 7, 13, 0, 1, 25, 49, 73, 0, 1, 81, 261, 381, 501, 0, 1, 331, 1531, 2611, 3331, 4051, 0, 1, 1303, 9073, 19993, 27553, 32593, 37633, 0, 1, 5937, 63393, 165873, 253233, 313713, 354033, 394353, 0, 1, 26785, 465769, 1436473, 2540233, 3326473, 3870793, 4233673, 4596553
Offset: 0
T(3,2) = 7 because there are 7 nilpotent subpermutations on {1,2,3}, each of nilpotency index less than or equal to 2, namely: empty map, 1-->2, 1-->3, 2-->1, 2-->3, 3-->1, 3-->2.
Triangle starts:
1;
0, 1;
0, 1, 3;
0, 1, 7, 13;
0, 1, 25, 49, 73;
0, 1, 81, 261, 381, 501;
0, 1, 331, 1531, 2611, 3331, 4051;
...
- A. Laradji and A. Umar, On the number of subpermutations with fixed orbit size, Ars Combinatoria, 109 (2013), 447-460.
-
egf:= k-> exp(add(x^j, j=1..k)):
T:= (n, k)-> n!*coeff(series(egf(k), x, n+1), x, n):
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Oct 10 2015
# second Maple program:
T:= proc(n, k) option remember; `if`(n=0, 1, add(
T(n-j, k)*binomial(n-1, j-1)*j!, j=1..min(n,k)))
end:
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Sep 29 2017
-
Table[n!*SeriesCoefficient[Exp[x*(x^k-1)/(x-1)], {x, 0, n}], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 18 2016 *)
A261767
Triangle read by rows: T(n,k) is the number of subpermutations of an n-set, whose orbits are each of size at most k with at least one orbit of size exactly k.
Original entry on oeis.org
1, 1, 1, 1, 3, 3, 1, 7, 18, 8, 1, 15, 99, 64, 30, 1, 31, 510, 560, 300, 144, 1, 63, 2745, 4800, 3150, 1728, 840
Offset: 0
T(3, 2) = 18 because there are 18 subpermutations on {1,2,3} whose orbits are each of size at most 2 with at least one orbit of size exactly 2, namely: (1 2 --> 2 1), (1 3 --> 3 1), (2 3 --> 3 2), (123 --> 213), (123 --> 321), (123 --> 132); (1-->2), (1-->3), (2-->1), (2-->3), (3-->1), (3-->2); (13-->23), (12-->32), (23-->13), (32-->33), (23-->21), (13-->12).
Triangle starts:
1;
1, 1;
1, 3, 3;
1, 7, 18, 8;
1, 15, 99, 64, 30;
1, 31, 510, 560, 300, 144;
...
- A. Laradji and A. Umar, On the number of subpermutations with fixed orbit size, Ars Combinatoria, 109 (2013), 447-460.
A261765
Triangle read by rows: T(n,k) is the number of subpermutations of an n-set, whose orbits are each of size at most k with at least one orbit of size exactly k, and without fixed points. Equivalently, T(n,k) is the number of partial derangements of an n-set each of whose orbits is of size at most k with at least one orbit of size exactly k, and without fixed points.
Original entry on oeis.org
1, 1, 0, 1, 0, 3, 1, 0, 9, 8, 1, 0, 45, 32, 30, 1, 0, 165, 320, 150, 144, 1, 0, 855, 2240, 1800, 864, 840, 1, 0, 3843, 17360, 18900, 12096, 5880, 5760, 1, 0, 21819, 146048, 195300, 145152, 94080, 46080, 45360, 1, 0, 114075, 1256192, 2120580, 1959552, 1270080, 829440, 408240, 403200
Offset: 0
T(n,1) = 0 because there is no (partial) derangement with an orbit of size 1.
T(3,2) = 9 because there are 9 subpermutations on {1,2,3}, whose orbits are each of size at most 2 with at least one orbit of size exactly 2, and without fixed points, namely: (1 2 --> 2 1), (1 3 --> 3 1), (2 3 --> 3 2), (1-->2), (1-->3), (2-->1), (2-->3), (3-->1), (3-->2).
Triangle starts:
1;
1, 0;
1, 0, 3;
1, 0, 9, 8;
1, 0, 45, 32, 30;
1, 0, 165, 320, 150, 144;
1, 0, 855, 2240, 1800, 864, 840;
...
- A. Laradji and A. Umar, On the number of subpermutations with fixed orbit size, Ars Combinatoria, 109 (2013), 447-460.
A261766
a(n) is the number of partial derangements of an n-set with at least one orbit of size exactly n.
Original entry on oeis.org
1, 0, 3, 8, 30, 144, 840, 5760, 45360, 403200, 3991680, 43545600, 518918400, 6706022400, 93405312000, 1394852659200, 22230464256000, 376610217984000, 6758061133824000, 128047474114560000, 2554547108585472000, 53523844179886080000, 1175091669949317120000
Offset: 0
a(3) = 8 because there are 8 partial derangements on {1,2,3} with at least one orbit of size 3 namely: (1,2) --> (2,3), (1,2) --> (3,1), (1,3) --> (2,1), (1,3) --> (3,2), (2,3) --> (3,1), (2,3) --> (1,2), (1,2,3) --> (2,3,1), (1,2,3) --> (3,1,2).
- A. Laradji and A. Umar, On the number of subpermutations with fixed orbit size, Ars Combinatoria, 109 (2013), 447-460.
Showing 1-5 of 5 results.
Comments