A261774 Number of compositions of n where the (possibly scattered) maximal subsequence of part i with multiplicity j is marked with a word of length i*j over an n-ary alphabet whose letters appear in alphabetical order and all n letters occur exactly once in the composition.
1, 1, 2, 8, 29, 117, 696, 4286, 25458, 156843, 1156246, 9521096, 79140828, 665427791, 5610420458, 49509430318, 475540600965, 4831978977077, 51175720976994, 552595605354707, 5923618798039611, 63654533191518745, 705094561770919436, 8127236135685948103
Offset: 0
Keywords
Examples
a(3) = 8: 3abc, 2ab1c, 2ac1b, 2bc1a, 1a2bc, 1b2ac, 1c2ab, 1a1b1c.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
Crossrefs
Programs
-
Maple
b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0, add(b(n-i*j, i-1, p+j)/j!*binomial(n, i*j), j=0..n/i))) end: a:= n-> b(n$2, 0): seq(a(n), n=0..25);
-
Mathematica
b[n_, i_, p_] := b[n, i, p] = If[n == 0, p!, If[i < 1, 0, Sum[b[n - i*j, i - 1, p + j]/j!*Binomial[n, i*j], {j, 0, n/i}]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, May 17 2018, translated from Maple *)