cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261778 Positive numbers n such that (digitsum(n))^2 equals (product of digits(n))^3.

Original entry on oeis.org

1, 11114, 11141, 11411, 14111, 41111, 111122, 111212, 111221, 112112, 112121, 112211, 121112, 121121, 121211, 122111, 211112, 211121, 211211, 212111, 221111, 1111111111111111119, 1111111111111111191, 1111111111111111911, 1111111111111119111, 1111111111111191111, 1111111111111911111
Offset: 1

Views

Author

K. D. Bajpai, Aug 31 2015

Keywords

Comments

Sequence is infinite because it contains all the numbers made of k fours and 8^k-4k ones. - Giovanni Resta, Sep 01 2015

Examples

			11114 appears in the sequence because (1 + 1 + 1 + 1 + 4)^2 = (1*1*1*1*4)^3 = 64.
111122 appears in the sequence because (1 + 1 + 1 + 1 + 2 + 2)^2  = (1*1*1*1*2*2)^3 = 64.
		

Crossrefs

Programs

  • Magma
    [n : n in [1..1000000] | (&+Intseq(n))^2 eq (&*Intseq(n))^3 ];
  • Mathematica
    Select[Range[20000000], Plus @@ IntegerDigits[#]^2 == Times @@ IntegerDigits[#]^3 &]
  • PARI
    for(n = 1,1000000, d = digits(n); if((sumdigits(n))^2 == prod(i = 1, #d, d[i])^3, print1(n, ", ")));
    
  • PARI
    proddigits(n)=my(d=digits(n)); prod(i=1,#d,d[i])
    is(n)=my(s=sumdigits(n)); if(!ispower(s,3), return(0)); s^2==proddigits(n)^3 \\ Charles R Greathouse IV, Aug 31 2015
    

Extensions

a(22)-a(27) from Charles R Greathouse IV, Aug 31 2015