A261778 Positive numbers n such that (digitsum(n))^2 equals (product of digits(n))^3.
1, 11114, 11141, 11411, 14111, 41111, 111122, 111212, 111221, 112112, 112121, 112211, 121112, 121121, 121211, 122111, 211112, 211121, 211211, 212111, 221111, 1111111111111111119, 1111111111111111191, 1111111111111111911, 1111111111111119111, 1111111111111191111, 1111111111111911111
Offset: 1
Examples
11114 appears in the sequence because (1 + 1 + 1 + 1 + 4)^2 = (1*1*1*1*4)^3 = 64. 111122 appears in the sequence because (1 + 1 + 1 + 1 + 2 + 2)^2 = (1*1*1*1*2*2)^3 = 64.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
- Charles R Greathouse IV, GP script
Programs
-
Magma
[n : n in [1..1000000] | (&+Intseq(n))^2 eq (&*Intseq(n))^3 ];
-
Mathematica
Select[Range[20000000], Plus @@ IntegerDigits[#]^2 == Times @@ IntegerDigits[#]^3 &]
-
PARI
for(n = 1,1000000, d = digits(n); if((sumdigits(n))^2 == prod(i = 1, #d, d[i])^3, print1(n, ", ")));
-
PARI
proddigits(n)=my(d=digits(n)); prod(i=1,#d,d[i]) is(n)=my(s=sumdigits(n)); if(!ispower(s,3), return(0)); s^2==proddigits(n)^3 \\ Charles R Greathouse IV, Aug 31 2015
Extensions
a(22)-a(27) from Charles R Greathouse IV, Aug 31 2015
Comments