cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261781 Number T(n,k) of compositions of n where each part i is marked with a word of length i over a k-ary alphabet whose letters appear in alphabetical order and all k letters occur at least once in the composition; triangle T(n,k), n >= 0, 0 <= k <= n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 3, 0, 4, 16, 13, 0, 8, 66, 132, 75, 0, 16, 248, 924, 1232, 541, 0, 32, 892, 5546, 13064, 13060, 4683, 0, 64, 3136, 30720, 114032, 195020, 155928, 47293, 0, 128, 10888, 162396, 893490, 2327960, 3116220, 2075948, 545835
Offset: 0

Views

Author

Alois P. Heinz, Aug 31 2015

Keywords

Comments

From Vaclav Kotesovec, Oct 14 2017: (Start)
Conjecture: For k > 0 the recurrence order for column k is equal to k*(k+1)/2.
Column k > 0 is asymptotic to c(k) * d(k)^n, where c(k) and d(k) are constants (dependent only on k).
k c(k) d(k)
1 A131577(n) ~ 0.50000000000000000000000000 * 2.00000000000000000000000000^n.
2 A293579(n) ~ 0.60355339059327376220042218 * 3.41421356237309504880168872^n.
3 A293580(n) ~ 0.64122035031051210658648604 * 4.84732210186307263951891624^n.
4 A293581(n) ~ 0.66065168848540565019767995 * 6.28521350788324520158143964^n.
5 A293582(n) ~ 0.67250239588725756267924287 * 7.72502395887257562679242875^n.
6 A293583(n) ~ 0.68048292906885160660288253 * 9.16579514882621927923459043^n.
7 A293584(n) ~ 0.68622254929933439577377124 * 10.6071156901906815408327973^n.
8 A293585(n) ~ 0.69054873168854973836384871 * 12.0487797070167958138215794^n.
9 A293586(n) ~ 0.69392626461456654033893782 * 13.4906727630621977261008808^n.
10 A293587(n) ~ 0.69663630864564830007443110 * 14.9327261729129660014886221^n.
---
Conjecture: d(k+1) - d(k) tends to 1/log(2).
d(2) - d(1) = 1.414213562373095048801688724209698...
d(3) - d(2) = 1.433108539489977590717227522340838...
d(4) - d(3) = 1.437891406020172562062523400686067...
d(5) - d(4) = 1.439810450989330425210989107036901...
d(6) - d(5) = 1.440771189953643652442161677346934...
d(7) - d(6) = 1.441320541364462261598206961226199...
d(8) - d(7) = 1.441664016826114272988782079622148...
d(9) - d(8) = 1.441893056045401912279301345910755...
d(10)- d(9) = 1.442053409850768275387741352145193...
1 / log(2) = 1.442695040888963407359924681001892...
(End)

Examples

			A(3,2) = 16: 3aab, 3abb, 2aa1b, 2ab1a, 2ab1b, 2bb1a, 1a2ab, 1a2bb, 1b2aa, 1b2ab, 1a1a1b, 1a1b1a, 1a1b1b, 1b1a1a, 1b1a1b, 1b1b1a.
Triangle T(n,k) begins:
  1;
  0,  1;
  0,  2,    3;
  0,  4,   16,    13;
  0,  8,   66,   132,     75;
  0, 16,  248,   924,   1232,    541;
  0, 32,  892,  5546,  13064,  13060,   4683;
  0, 64, 3136, 30720, 114032, 195020, 155928, 47293;
  ...
		

Crossrefs

Row sums give A120733.
Main diagonal gives A000670.
T(2n,n) gives A261784.
T(n+1,n)/2 gives A083385.
Cf. A261719 (same for partitions), A261780.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1,
          add(A(n-j, k)*binomial(j+k-1, k-1), j=1..n))
        end:
    T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k):
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n==0, 1,
        Sum[A[n-j, k]*Binomial[j+k-1, k-1], {j, 1, n}]];
    T[n_, k_] := Sum[A[n, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 08 2017, translated from Maple *)

Formula

T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A261780(n,k-i).