A261781 Number T(n,k) of compositions of n where each part i is marked with a word of length i over a k-ary alphabet whose letters appear in alphabetical order and all k letters occur at least once in the composition; triangle T(n,k), n >= 0, 0 <= k <= n, read by rows.
1, 0, 1, 0, 2, 3, 0, 4, 16, 13, 0, 8, 66, 132, 75, 0, 16, 248, 924, 1232, 541, 0, 32, 892, 5546, 13064, 13060, 4683, 0, 64, 3136, 30720, 114032, 195020, 155928, 47293, 0, 128, 10888, 162396, 893490, 2327960, 3116220, 2075948, 545835
Offset: 0
Examples
A(3,2) = 16: 3aab, 3abb, 2aa1b, 2ab1a, 2ab1b, 2bb1a, 1a2ab, 1a2bb, 1b2aa, 1b2ab, 1a1a1b, 1a1b1a, 1a1b1b, 1b1a1a, 1b1a1b, 1b1b1a. Triangle T(n,k) begins: 1; 0, 1; 0, 2, 3; 0, 4, 16, 13; 0, 8, 66, 132, 75; 0, 16, 248, 924, 1232, 541; 0, 32, 892, 5546, 13064, 13060, 4683; 0, 64, 3136, 30720, 114032, 195020, 155928, 47293; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- E. Munarini, M. Poneti, and S. Rinaldi, Matrix compositions, JIS 12 (2009) 09.4.8, Table 2.
Crossrefs
Programs
-
Maple
A:= proc(n, k) option remember; `if`(n=0, 1, add(A(n-j, k)*binomial(j+k-1, k-1), j=1..n)) end: T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k): seq(seq(T(n, k), k=0..n), n=0..10);
-
Mathematica
A[n_, k_] := A[n, k] = If[n==0, 1, Sum[A[n-j, k]*Binomial[j+k-1, k-1], {j, 1, n}]]; T[n_, k_] := Sum[A[n, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 08 2017, translated from Maple *)
Formula
T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A261780(n,k-i).
Comments