cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261792 Primes of the form k*pi(k) - 1, where pi(k) is the number of primes <= k.

Original entry on oeis.org

5, 7, 17, 31, 59, 83, 89, 151, 167, 233, 251, 373, 443, 467, 479, 601, 643, 719, 863, 911, 1019, 1097, 1151, 1187, 1291, 1439, 1553, 1637, 1759, 1931, 2207, 2861, 3023, 3389, 3449, 3539, 3659, 3719, 3779, 3967, 4759, 4793, 4861, 5471, 5507, 6269, 6551, 6959, 7039, 7079, 7643, 7727, 7853, 7937, 8623
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 01 2015

Keywords

Comments

Sequence elements A000040 of the form A128913(n) - 1.
Primes of the form pi(k)*pi(prime(k)) + e^(i*Pi), where pi(k) is the number of primes <= k, i is the imaginary unit, Pi = 3.14159...

Crossrefs

Programs

  • Mathematica
    Select[Array[# PrimePi[#] - 1 &, {200}], PrimeQ] (* Michael De Vlieger, Sep 01 2015 *)
  • PARI
    list(lim)=my(v=List(),k,pi,t); while(1, if(isprime(k++), pi++); t=k*pi-1; if(t>lim, return(Vec(v))); if(isprime(t), listput(v,t))) \\ Charles R Greathouse IV, Sep 18 2015

Extensions

Terms a(32)-a(55) added by Michael De Vlieger, Sep 01 2015
Corrected by Charles R Greathouse IV, Sep 18 2015